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Taylor Polynomials

Question A broker offers you bonds at 90% of their face value. When you cash
them in later at their full face value, what percentage profit will you make?
Answer The answer is not 10%. In fact, since you will get $1 for each $0.90 you
invest, you get back

1
0.90   ≈  $1.11

for each dollar that you invest, giving you an 11% profit.

Now think about this problem in another way. You are being offered a discount of x
(in this case, x = 0.10). To find your profit you need to compute

f(x) = 
1

1 – x  – 1.

We would like to find an easier-to-compute approximation to f(x), to see why f(0.90)
≈ 0.11, and to see quickly what would happen for other discount rates. In fact, we
shall see very soon that a good approximation is

f(x)  ≈  x + x2,

if x is close to 0. When x = 0.10, this gives

f(x) ≈ 0.10 + 0.01 = 0.11.

What we are claiming then is that f(x) can be approximated by a polynomial. This is
nice because polynomials are the easiest functions to compute and manipulate. The
more general question behind all of this is:

Question How can any function f(x) be approximated, for values of x close to some
point a, by a polynomial?
Answer One very useful answer is given by the following theorem. Its proof is
really quite easy from the column method of integration by parts, and we shall give
this proof at the end of the section.
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Taylor’s Theorem with Remainder
If f(x) is (n+1)-times differentiable, then

f(x) = f(a) + f'(a)(x–a) + 
f ' ' (a)(x–a)2

2!  + 
f ' ' ' (a)(x–a)3

3!   + ··· + 
f(n)(a)(x–a)n

n!  + Rn

where

Rn = ⌡
⌠

a

x

 
f(n+1)(t)(x–t)n

n!  dt 

Here, as usual, n! = n(n–1)(n–2) ...  2·1 is called n factorial.

The polynomial

T(x) = f(a) + f'(a)(x–a) + 
f ' ' (a)(x–a)2

2!  + 
f ' ' ' (a)(x–a)3

3!   + ··· + 
f(n)(a)(x–a)n

n!  

is called nth Taylor polynomial of f around a, or the nth Taylor expansion  of f
around a.† The last term Rn is called the remainder, or error term, and we shall see
how it allows us to estimate how far the polynomial is from equaling the function f.

For now, let us ignore the remainder, and concentrate on the Taylor polynomials. In
fact, it often happens that the remainders Rn become smaller and smaller, approaching
zero, as n gets large. When this occurs, f(x) is approximately equal to its nth Taylor
sum;

f(x) ≈ f(a) + f'(a)(x–a) + 
f ' ' (a)(x–a)2

2!  + 
f ' ' ' (a)(x–a)3

3!   + ··· + 
f(n)(a)(x–a)n

n!  

For this reason, we often call the Taylor sum the Taylor approximation of degree n.
The larger n is, the better the approximation.

Example 1 Taylor Polynomial

Expand f(x) = 
1

1–x – 1 around a = 0, to get linear, quadratic and cubic approximations.

Solution We will be using the formula for the nth Taylor sum with a = 0. Thus, we
need to calculate f(0), f'(0), f'(0), ... Thus let us list f(x) and all its derivatives,
evaluating at a  = 0 each time.

f(x) = 
1

1–x  – 1 so  f(0) = 0
                                                
† When a = 0, this is also called the MacLaurin polynomial, particularly by Scotsmen.
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f'(x) = 
1

(1–x)2  so f'(0) = 1

f"(x) = 
2

(1–x)2  so f"(0) = 2

f ' ' ' (x) = 
6

(1–x)2  so f ' ' ' (0) = 6

We can now write down the approximations one-at-a-time.

Degree 1 approximation:  f(x) ≈ f(a) + f'(a)(x–a).
Substituting, we get:

1
1–x  – 1 ≈  0 + (1)x = x.

So, the linear approximation to f(x) is the polynomial x.

Degree 2 approximation: f(x) ≈ f(a) + f'(a)(x–a) + 
f ' ' (a)(x–a)2

2!  
Substituting, we get:

1
1–x  – 1 ≈  0 + (1)x + 

2x2

2!  = x + x2.

Thus the quadratic approximation to f(x) is the polynomial x + x2.

Degree 3 approximation: f(x) ≈ f(a) + f'(a)(x–a) + 
f ' ' (a)(x–a)2

2!  + 
f ' ' ' (a)(x–a)3

3!  
Substituting, we get:

1
1–x  – 1 ≈  0 + (1)x + 

2x2

2!   + 
6x3

3!   = x + x2 + x3.

Thus the cubic approximation to f(x) is the polynomial x + x2 + x3.

Before we go on... Looking at the answers, you probably suspect—correctly—that
the forth degree approximation to f(x) is x + x2 + x3 + x4, and so on for the higher
degree approximations. If x happens to have magnitude smaller than 1, these
approximations get more and more accurate, and

1
1–x  – 1 is exactly equal to x + x2 + x3 + x5 + ... + xn + ... ,

a never-ending sum. This infinite sum is called the Taylor series of the function f we
are talking about, and tells us something quite interesting: whereas we can
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approximate f(x) by polynomials of larger and larger degree, f(x) itself is not exactly a
polynomial, but rather an “infinite polynomial,” (called a power series).

Figure 1 shows the graphs of these approximations, together with the graph of f(x) =
1

1–x – 1.

Figure 1
Notice how the graphs of the successive approximations get closer and closer to the
curve near x = 0, but nowhere near the curve when x > 1.

Example 2 Taylor Polynomial for ex

Find a 5th degree polynomial approximation for ex by expanding the function about
zero.

Solution
Once again, we have a = 0, and we need to list all the derivatives up to the fifth,
evaluating at 0 as we go.

f(x) = ex so  f(0) = 1
f'(x) = ex so f'(0) = 1
f"(x) = ex so f"(0) = 1
f ' ' ' (x) = ex so f ' ' ' (0) = 1
f (4)(x) = ex so f (4)(0) = 1
f (5)(x) = ex so f(5)(0) = 1

Since the formula for the fifth degree approximation to f(x) is
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f(x) ≈ f(0) + f'(0)x + 
f ' ' (0)x2

2!  + 
f ' ' ' (0)x3

3!  + 
f(4)(0)x4

4!  + 
f(5)(0)x5

5!  ,
we get

ex ≈ 1 + x + 
x2

2! + 
x3

3! + 
x4

4! + 
x5

5!

as our desired degree 5 approximation.

Before we go on... This approximation turns out to be quite accurate for small
values of x—even as large as 1. For instance, if we take x = 1, the left-hand side is
2.7182..., while the right-hand side is 2.71666..., an accuracy to within about 0.002. It
turns out (and we shall see why shortly) that the error terms approach zero, no matter
what the value of x, so that

ex ≈ 1 + x + 
x2

2! + 
x3

3! + 
x4

4! + ··· + 
xn

n! + ···

In particular,

e = e1 = 1 + 1 + 
1
2! + 

1
3! + 

1
4! + ··· + 

1
n! + ···

This is in fact how many calculators compute ex and e.

If you have a graphing calculator or graphing software, you are urged to graph several
approximations, and compare their graphs with that of ex.

Example 3  Taylor Polynomial for ln x
Find the 5th Taylor polynomial for f(x) = ln x around 1.

Solution This time, a = 1.*  We need five derivatives of f:

f(x) = ln x so f(1) = 0

f'(x) = 
1
x so f'(1) = 1

f''(x) = –
1
x2 so f"(1) = –1

f'''(x) = 
2
x3 so f ' ' ' (1) = 2

f(4)(x) = –
6
x4 so f(4)(1) = –6

                                                
* We can't very well take a = 0. (Why?)
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f(5)(x) = 
24
x5 so f(5)(x) = 24

The 5th Taylor polynomial must be

ln x ≈ 0 + (1)(x–1) – 
(1)(x–1)2

2  + 
2(x–1)3

3!  – 
6(x–1)4

4!  + 
24(x–1)5

5!

≈ (x–1) – 
(x–1)2

2  + 
(x–1)3

3  – 
(x–1)4

4  + 
(x–1)5

5

Before we go on... If |x| < 1, then the remainders go to zero as n gets large, so that
we can also represent ln x as an infinite polynomial:

ln x = (x–1) – 
(x–1)2

2  + 
(x–1)3

3  – 
(x–1)4

4  + 
(x–1)5

5  + ···

We've been making lots of claims about the remainders becoming smaller and smaller
as n gets large, so it is about time that we took a careful look at just what exactly is
going on with these remainders. Recall that the remainder is given by the formula

Rn = ⌡
⌠

a

x

 
f(n+1)(t)(x–t)n

n!  dt .

This formula gives the exact error when f(x) is approximated by the nth Taylor sum.
The problem is that it is often too cumbersome to evaluate as it stands; what we're
going to do is get rid of this formula completely, and replace it by something more
manageable. Our philosophy is the following: rather than try to get the exact error, we
shall judiciously overestimate the magnitude of the error using a far simpler formula.

Question What's the point of overestimating the error?
Answer Look at it this way. The value of e is 2.718281828... If you say that e =
2.718 to within ±0.0003, you are estimating the error to be at most ±0.0003 when e is
replaced by 2.7178. In other words, 0.0003 is an overestimation of the actual error;
the actual error is 0.000281828... By overestimating the error, you are making a
correct claim about the value of e. If, instead, you were to underestimate the error,
and claim, for instance, that e = 2.718 to within ±0.0002, you would be dead wrong!†

Question Fine. Now how do we overestimate the magnitude of Rn?
Answer First, we look at the magnitude of the (n+1)st derivative of f(t) as t varies
between a and x, and overestimate that by a single number M. (See Figure 2.)

                                                
† and the bridges you design may collapse as a result!
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M

Graph of |f (n+1)(t)|

xa
t

y

M is an overestimation of the value of |f(n+1)(t)| for t between a and x.
Figure 2

We can then use the overestimation M to overestimate the error term Rn:

Estimation of Error Term
If f is approximated by the nth Taylor expansion about x = a, then the error term Rn is

no more than 
M (x–a)n+1

(n+1)! , or

Rn  ≤  
M (x–a)n+1

(n+1)!  

where M is an overestimation of the value of |f(n+1)(t)| for t between a and x.

Quick Example

Let f(x) = ln x , a = 1, x = 2, and n = 3. Then f(n+1)(t) = f(4)(t) = – 
6
t4 . For values of t ≥

1, its magnitude is 6 or smaller, so we can take M = 6 for x = 2. If we expand f(x)
about a = 1, the third degree Taylor polynomial

T(x) = (x–1) – 
(x–1)2

2  + 
(x–1)3

3 . See Example 3

T(2) = (2–1) –  
(2–1)2

2  + 
(2–1)3

3  =  
5
6 

is accurate to within
M (x–a)n+1

(n+1)!  = 
6 (2–1)4

4!  = 
1
4

Thus, ln 2 ≈ 
5
6  to within ± 

1
4 .
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Example 4  Estimating the Error

Expand f(x) = 
1

(1–x) – 1 around x = 0 to get a cubic approximation, and estimate the

error if we approximate f(x) by this cubic for x between 0 and 12 .

Solution We already saw in Example 1 that the cubic approximation to f(x) is

T(x) = x + x2 + x3.

To estimate the error, we need to calculate M . For this, we need to look at the

magnitude of the (n+1) = 4th derivative of f(t), which is 
24

(1–t)5. Now t varies between

0 and x, which is anywhere between 0 and 12 . In other words, t varies between 0 and 12
.

We now ask ourselves: What is the biggest 
24

(1–t)5 can be if t is between 0 and 12 ? If

you look at the graph of this function of t (plot a few points or use a graphing
calculator) you will see that it increases with t from 0 to 12 .  (Figure 3).

Graph of f(t) = 
24

(1–t)5

Figure 3

In other words, it is largest when t = 1
2 . Its value there is 

24
(1–1

2
)5 = 24×32 = 768. In

other words, we can take M = 768 (or even 800, if we prefer—see the Figure—as
long as we don't underestimate it!). Thus the error is

Rn  ≤  
M (x–a)n+1

(n+1)!  
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R1  ≤  
768x(3+1)

(3+1)!   = 
768x4

4!  = 32x4.

Thus, for example, if we take x = 13, then f(1
3) ≈ 13 + 1

3
2
 +  1

3
3
 to within 32 1

3
4
 = 0.395

Example 5  Approximating e

Calculate the error when e is approximated by 1 + 1 + 
1
2!  + 

1
3! + 

1
4!.

Solution The given polynomial is the 4th Taylor approximation of ex with a = 0 and
x = 1 (see Example 2). To get M, we look at the fifth derivative of et, which is again
e
t, and overestimate that for t between 0 and 1. Since the largest value it can have in

this range is et
 = e. we can take M = e, or simpler yet, M = 3, since we can be sure

that 3 is a convenient overestimation of e. Thus the error is

R4 ≤ 
3 |(1-0)4+1|

(4+1)!  = 
3

120 = 0.025.

Thus, we can be sure that e ≈ 1 + 1 + 
1
2!  + 

1
3! + 

1
4!. to within 0.025.

Example 6  Approximating the Natural Logarithm
Find the 5th Taylor polynomial for f(x) = ln x around a = 1, and estimate the error
term if we use this polynomial to approximate ln1.1.

Solution We already calculated this polynomial in Example 3, where we obtained:

ln x ≈ (x–1) – 
(x–1)2

2  + 
(x–1)3

3  – 
(x–1)4

4  + 
(x–1)5

5 .

For the error term, we want to approximate ln  1.1, so x = 1.1. We look at the 6th
derivative,  f(6)(t) = -120/t6 and estimate its largest magnitude as t ranges from 1 to
1.1. It is largest when t = 1, so that we can take M = 120. (Note that we throw away
the sign in estimating a value for M.) Thus, the error is

R5 ≤ 
120(1.1 – 1)5+1

(5+1)!  = 
0.00012

720   ≈ 0.000 000 167.
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Before we go on...The point of this example is that there is a way to calculate
natural logarithms using ordinary arithmetic. If we wish to know ln 1.1, this tells us:

ln 1.1 ≈ (1.1–1) – 
(1.1–1)2

2  + 
(1.1–1)3

3  – 
(1.1–1)4

4  + 
(1.1–1)5

5  ≈  0.095 310 3.

How accurate is this? The error is no larger than 0.000  000 167, so we can say with
absolute certainty that ln 1.1 is somewhere between 0.095 310 1 and 0.095 310 5.

Sometimes, we would like to approximate a certain quantity to a specified number
of decimal places.

Question What exactly does it mean to approximate a quantity to, say, 3 decimal
places.
Answer If we already know the exact value of the quantity, then we simply round it
to 3 decimal places. Notice that doing so may change the quantity by as much as
0.000 5 = 5×10-4. (For example, rounding 0.100 5 to 3 decimal places produces 0.101,
and so we have changed it by 0.000 5 .) This motivates the following definition:

Accuracy to n Decimal Places
If x is a quantity we want to approximate, and y is an approximation of x, then we say
that y approximates x to n decimal places if the magnitude of the difference is no
bigger than 5×10–(n+1); that is,

|y – x| ≤ 5×10–(n+1)

Quick Examples
1. 0.12345 approximates 0.123454 to 5 decimal places because

| 0.12345-0.123454 | = 0.000 004 ≤  0.000 005 = 0.5×10-6.

2. 0.999 approximates 1.000 to 2 decimal places because
| 0.999-1.000 | = 0.001 ≤  0.005 = 0.5×10-3.

Example 7 Approximating to 10 Decimal Places
How many terms would we need in order to compute ln 1.1 to 10 decimal places?

Solution We want to know what n will guarantee that the error will be no larger than
0.5×10-11. For this, we will need to estimate the error term Rn for a general n, and so
we need the (n+1)st derivative of f(x) = ln x. If we go back to the calculation of the
derivatives of ln x, we can notice that
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|f
(n+1)

(t)| = 
n!

(n+1)! .

As in the last example, we have a = 1 and x = 1.1, so the (n+1)st derivative is largest
when t = 1, giving M = n!. Thus,

Rn ≤ 
n!(0.1)n+1

(n+1)!  = 
(0.1)n+1

n+1 .

We want this error to be no larger than 0.5×10-11, so we try a few numbers for n until
the above expression is 10-11 or smaller. After some trial and error we notice that

(0.1)9+1

(9+1)   = 10-11,

So, we need n = 9 in order to approximate ln 1.1 to 10 decimal places. That is,

ln 1.1≈ 0.1 – 
0.12

2  + 
0.13

3  – 
0.14

4  + 
0.15

5  - 
0.16

6  + 
0.17

7  - 
0.18

8  + 
0.19

9
 ≈ 0.095 310 179 8

which is guaranteed to be accurate to the 10 decimal places shown.

Let us finish by giving the simple proof of Taylor’s Theorem. (You should turn back
several pages and look at what Taylor’s Theorem says.)

Proof of Taylor's Theorem
We start by writing the familiar equation

⌡
⌠

a

x
f'(t) 

 
dt  = f(x) - f(a) Fundamental Theorem of Calculus

so that

f(x) = f(a) + ⌡
⌠

a

x
f'(t) 

 
dt 

Now comes the clever part. We now use integration by parts in a strange way to
evaluate the integral.
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 D I
+ f'(t) 1

- f''(t) (t-x)

+ f'''(t) (t-x)
2

2!
- ... ...

(-1)
n-1

f
(n)

(t) (t-x)
n–1

(n–1)!

(-1)
n∫ f

(n+1)
(t) → (t-x)

n

n!

Here we used the antiderivative (t-x) of 1, which we can do if we like. Why do we do
this? Omniscience. (Actually, trial an error, to make the next step come out right.)
The last arrow is labeled with a - if n is odd, and a + if n is even. A useful trick: (-
1)n in +1 if n is even, and -1 if n is odd, and we use this below. If we do the
integration by parts according to this table, we get

f(x) = f(a) + 



f'(t) 

 
(t-x)

 

a

x
 - 








f''(t) 
 

(t–x)2

2!
 

a

x

 + 







f'''(t) 
 

(t–x)3

3!
 

a

x

  - ...

+ (-1)
n-1 








f
(n)

(t) 
 

(t–x)n

n!
 

a

x

  + (-1)
n⌡
⌠

a

x

 
f(n+1)(t)(t–x)n

n!  dt 

= f(a) + f'(a)(x–a) + 
f ' ' (a)(x–a)2

2!  + 
f ' ' ' (a)(x–a)3

3!   + ···

+  
f(n)(a)(x–a)n

n!  + ⌡
⌠

a

x

 
f(n+1)(t)(x–t)n

n!  dt 

Here we have used many times the fact that (a-x)n = (x-a)n if n is even, but (a-x)n

= -(x-a)n if n is odd.

Taylor Series Exercises
In Exercises 1–14, find the 5th Taylor polynomials of the functions around the given
points.

1. f(x) = x3 + 2x2 - 3x + 1; a = 0 2. f(x) = x3 - x2 + 4x + 10; a = 0

3. f(x) = x3 + 2x2 - 3x + 1; a = 1 4. f(x) = x3 - x2 + 4x + 10; a = 1
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5. f(x) = ln(1-x); a = 0 6. f(x) = ln(2-x); a = 0

7. f(x) = ex;  a = 0 8. f(x) = e-x; a = 0

9. f(x) = e-x2; a = 0 10. f(x) = e(x-1)2; a = 1

11. 
1

x-1
 ; x = 0  12. 

1

(1-x)
2 ;  x = 0

13. x ;  x = 1 14. x1/3; x = 1

In Exercises 15–20, find the Taylor polynomial around x = a approximating f(x) to
within ±0.0001. Calculate the approximation given by the Taylor polynomial, and
compare to the answer given by a calculator.

15. f(x) = ex; a = 0, approximate f(1)

16. f(x) = ex; a = 0, approximate f(1/2)

17. f(x) = 
1
x
 ; a = 1, approximate f(1.1)

18. f(x) = 
1
x

 ; a = 1, approximate f(0.9)

19. f(x) =  x ; a = 100, approximate f(101)

20. f(x) =  x ; a = 100, approximate f(99)

21. How many terms of the Taylor series around x = 0 could you use to approximate
e to 3 decimal places?

22. How many terms of the Taylor series around x = 0 could you use to approximate
e to 4 decimal places?

23.  To how many decimal places is the approximation
1

(1–x) – 1 ≈ x + x2 + x3

in Example 4 accurate when x = 0.1?

24. To how many decimal places is the approximation

ln 1.1 ≈ 0.1 – 
0.12

2  + 
0.13

3  – 
0.14

4  + 
0.15

5
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in Example 7 accurate?

Applications
25. Investing The Amex Gold BUGS† Index was at 150 points in January 2003,
decreasing at a rate of 14.5 points/month, and accelerating at 3.6 points/month2.

Source: http://www.amex.com

(a) Taking t as time in months since January 2003, obtain the and second Taylor
polynomials of the BUGS index b as a function of t around t = 0.
(b) Use the second order Taylor polynomial to approximate the value of the index
in January 2004, and compare the predicted value with the (approximate) actual
value.

26. Investing The price of Consolidated Edison common stock (ED) was 40.5 at the
start of December 1, 2003, increasing at a rate of $3/month, and decelerating by
$1.10/month2.

Source: http://money.excite.com

                                                
† BUGS stands for “basket of unhedged gold stocks.”
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(a) Taking t as time in months since December 1 2003, obtain the and second
Taylor polynomials of the ED stock price p as a function of t around t = 0.
(b) Use the second order Taylor polynomial to approximate the ED stock price on
April 1 2004, and compare the predicted price with the (approximate) actual price.

Communication & Reasoning Exercises
27. The linear Taylor polynomial of f(x) around a is the equation of the tangent line to
the graph of f at a. Explain.

28. The quadratic Taylor polynomial of f(x) around a is the equation of the parabola
tangent to the graph of f at a with the same curvature as f at a. Explain.

29. An enthusiastic math student, having discovered that

ln x = x - 1 - 
(x-1)

2

2  + 
(x-1)

3

3  - ...

decides to save money by not buying the scientific feature on his new calculator,
figuring that all he has to do is to use this formula to calculate ln x. Being somewhat
lazy, he decides that the formula

ln x = x - 1 - 
(x-1)

2

2
is “probably accurate to three decimal places.” Comment on this speculation.

30. Your friend tells you that the formula

ln x = x - 1 - 
(x-1)

2

2
is “definitely accurate to three decimal places provided x is close enough to 1.” How
close?

Answers: Taylor Series Exercises
1.  x3 + 2x2 - 3x + 1
2.  x3 - x2 + 4x + 10
3.  1 + 4(x-1) + 5(x-1)2 + (x-1)3 = x3 + 2x2 - 3x + 1
4.  14 + 5(x-1) + 2(x-1)2 + (x-1)3 = x3 - x2 + 4x + 10
5.  -x - x2/2 - x3/3 - x4/4 - x5/5
6.  ln2 - x/2 - x2/8 - x3/24 - x4/64 - x5/160
7.  1 + x + x2/2 + x3/6 + x4/24 + x5/120
8.  1 - x + x2/2 - x3/6 + x4/24 - x5/120
9.  1 - x2 + x4/2
10.  1 + (x-1)2 + (x-1)4/2
11. -1 - x - x2 - x3 - x4 - x5
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12. 1 + 2x + 3x2 + 4x3 + 5x4 + 6x5

13. 1 + (x-1)/2 - (x-1)2/8 + (x-1)3/16 - 5(x-1)4/128 + 7(x-1)5/256
14. 1 + (x-1)/3 - (x-1)2/9 + 5(x-1)3/81 - 10(x-1)4/243 + 22(x-1)5/729
15. n = 7:  1 + 1 + 1/2 + 1/3! + 1/4! + 1/5! + 1/6! + 1/7!  ≈   2.71825,  e1 =
2.71828. . .

16. n = 5:  1 + 1/2 + 1/8 + 1/(8.3!) + 1/(16.4!) + 1/(32.5!) ≈  1.6487,  e1/2 =
1.64872127...
17. n = 3:  1 - (0.1) + (0.1)2 - (0.1)3  =  0.909,  1/1.1 = 0.90909...
18. n = 4:  1 + (0.1) + (0.1)2 + (0.1)3 + (0.1)4 = 1.1111,  1/0.9 = 1.111...
19. n = 2:  10 + 1/20 - 1/8000 = 10.0499, 101 = 10.049875...
20. n = 2:  10 - 1/20 - 1/8000 = 9.94987, 99 = 9.9498743...
21. 8 terms altogether (n = 7)
22. 9 terms altogether (n = 8)

23. R3 ≤ 32x
4
 = 32(0.1)

4
 = 0.0032. Since this is less than 0,005, the approximation

is accurate to 2 decimal places.
24. R5 ≤ (0.1)6

/6 ≈  0.000 000  166 7 . Since this is less than 0.000 000 5, the
approximation is accurate to 6 decimal places.
25.(a) First Taylor Polynomial: b(t) ≈ 150 - 14.5t ; Second Taylor Polynomial:  b(t)
≈ 150 - 14.5t + 1.8t

2 (b) b(12) ≈  235.2 points. The actual value was around 220
points.
26.(a) First Taylor Polynomial: p(t) ≈ 40.5 + 3t; Second Taylor Polynomial: p(t) ≈

40.5  + 3t - 0.55t
2 (b) p(4) ≈  $43.70 points. The actual value was around $44.

27. The linear Taylor polynomial is f(a) + f'(a)(x-a) , which is the equation of the
line through (a,f(a)) with slope f'(a).
28. The quadratic polynomial is f(a) + f'(a)(x-a) + f''(a)(x-a)2/2, which has the
same value, first derivative, and second derivative at a as does f.
29. The speculation is unfounded. Take x = 1.5. Then ln 1.5 ≈ 0.4055, whereas the
second Taylor sum is T2(1.5) = 1.5-1 - (1.5-1)

2
/2 = 0.375, so the error is much

larger than 0.005.
30. If x is within 0.114 of 1, then the approximation is guaranteed to be accurate to 3
decimal places.


