Main Page | Everything for Finite Math | Everything for Applied Calc | Everything | Topic Summaries | On Line Tutorials | On Line Utilities | |||||||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|
|
||||||||||||
![]() |
Applied calculus topic summary: the integral |
Antiderivatives
Antiderivative in words: |
Examples
![]()
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Indefinite Integral
The expression
is read "the indefinite integral of f(x) with respect to x," and stands for the set of all antiderivatives of f. Thus, ∫ f(x) dx is a collection of functions; it is not a single function, nor a number. The function f that is being integrated is called the integrand, and the variable x is called the variable of integration. (The expression dx is short for "with respect to x.") |
Examples
![]()
The constant of integration, C, reminds us that we can substitute any number for C and get a different antiderivative. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Power Rule for the Indefinite Integral
In Words: Notes
|
Examples
![]()
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Indefinite Integrals of Some Exponential and Trig Functions
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Some Rules for the Indefinite Integral
(a) Sum and Difference Rules
In Words: (b) Constant Multiple Rule
In Words: Why are these rules true? Because the derivative of a sum is the sum of the derivatives, and similarly for differences and constant multiples. |
Examples
![]()
Want some practice? Try the tutorial or exercises. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Substitution
If u is a function of x, we can use the following formula to evaluate an integral.
Using the Formula Use of the formula is equivalent to the following procedure: 1. Write u as a function of x.
Deciding What to Use for u There is no hard and fast rule, but some guidelines that sometimes work are the following.
|
Example
![]() To evaluate
Now substitute in the integral to obtain the solution, as follows:
Want some practice? Try the tutorial or exercises. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Applying the Indefinite Integral: Motion in a Straight Line
If s(t) represents position at time t, then velocity is given by v(t) = s'(t) and acceleration by a(t) = v'(t). This means that
![]() s(t) = Moreover, for motion due to gravity close to the earth's surface, ignoring air resistance, a(t) ≈ -32 ft/s2 is constant. Integrating this twice gives the equations
s(t) = s0 + v0t -16t2 where v0 is the initial velocity and s0 is the initial position. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The Definite Integral as a Sum: Numerical Approach
If u is a function of x, we can use the following formula to evaluate an integral. Riemann Sum If f is a continuous function, the left Riemann sum with n equal subdivisions for f over the interval [a, b] is defined follows. First, partition the interval [a, b] into n equal parts:
x0 = a, x1 = a + Δx, x2 = a + 2Δx, ... xn = a + nΔx = b ![]() Next, add up the n products f(x0)Δx, Thus,
![]() The Definite Integral If f is a continuous function, the definite integral of f from a to b is defined as
In Words: The function f is called the integrand, the numbers a and b are the limits of integration, and the variable x is the variable of integration. Approximating the Definite Integral To approximate the definite integral, we use a Riemann sum with a large number of subdivisions. |
Example
Let us compute the Riemann sum for the integral First, to compute the subdivisions:
x0 = a = -1 x1 = a + Δx = -1 + 0.4 = 0.6 x2 = a + 2Δx = -1 + 2(0.4) = 0.2 x3 = a + 3Δx = -1 + 3(0.4) = 0.2 x4 = a + 4Δx = -1 + 4(0.4) = 0.6 x5 = b = 1 The Riemann sum we want is
  = [f(-1) + f(-0.6) + f(-0.2) + f(0.2) + f(0.6)]0.4 We can organize this calculation in a table as follows.
The Riemann sum is therefore
![]() If you have Excel and want to see a visual representation of Riemann sums like the picture on the left, download the Excel Riemann Sum Grapher. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The Definite Integral as Area: Geometric Approach
Geometric Interpretation of the Definite Integral (Non-Negative Functions) If f(x) ≥ 0 for all x in [a, b], then ![]() Geometric Interpretation of the Definite Integral (All Functions) For general functions, ![]() |
Example
Relationship between Riemann Sum Definition and Area Definition The following figure illustrates the relationship between the (left) Riemann sum and the area for the integral ![]() If Δx is the width of each rectangle, then:
Area of the first (leftmost) rectangle = height × width = f(0)Δx = f(x0)Δx
Adding the areas of all the rectangles together gives the Riemann Sum. As the number n of rectangles gets larger (so that each of them has width approaching zero) the area represented by the Reimann sum gets closer and closer to the actual area. Thus,
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The Definite Integral: Algebraic Approach and the Fundamental Theorem of Calculus
The Fundamental Theorem of Calculus (FTC) Let f be a continuous function defined on the interval [a, b]. Then: (a) If A(x) = (b) If f is any continuous antiderivative of f, and is defined on [a, b], then
Part (b) in words: |
Example
Example of (a)
Example of (b)
Another Example of (b)
|