(This topic is also in Section 1.3 in Finite Mathematics, Applied Calculus and Finite Mathematics and Applied Calculus)
For best viewing, adjust the window width to at least the length of the line below.
Q What is a linear function?
A A linear function is one whose graph is a straight line (hence the term "linear").
Q How do we recognize a linear function algebraically?
A As follows:
The Role of b in the equation y = mx + b
Let us look more closely at the above linear function, y = 3x  1, and its graph, shown above. This linear equation has m = 3 and b = 1.
Notice that that setting x = 0 gives y = 1, the value of b.
On the graph, the corresponding point (0, 1) is the point where the graph crosses the yaxis, and we say that b = 1 is the yintercept of the graph
The Role of m in the equation y = mx + b
Notice from the table that the value of y increases by m = 3 for every increase of 1 in x. This is caused by the term 3x in the formula: for every increase of 1 in x we get an increase of 31 = 3 in y.
On the graph, the value of y increases by exactly 3 for every increase of 1 in x, the graph is a straight line rising by 3 for every 1 we go to the right. We say that we have a rise of 3 units for each run of 1 unit. Similarly, we have a rise of 6 for a run of 2, a rise of 9 for a run of 3, and so on. Thus we see that m = 3 is a measure of the steepness of the line; we call m the slope of the line.
Here is the graph of y = 0.5x + 2, so that b = 2 (yintercept) and m = 0.5 (slope).
Notice that the graph cuts the yaxis at b = 2, and goes up 0.5 units for every one unit to the right. Here is a more general picture showing two "generic" lines; one with positive slope, and one wqith negative slope.
Graph of y = mx + b  
Positive Slope  Negative Slope 
Let y = 1.5x + 4.
Mathematicians traditionally use (delta, the Greek equivalent of the Roman letter D) to stand for "difference," or "change in." For example, we write x to stand for "the change in x."
Let us take another look at the linear equation
Now we know that y increases by 3 for every 1unit increase in x.
Similarly, y increases by 32 = 6 for every 3unit increase in x.
. . . .
In general, y increases by 3x units for every xunit change in x.
Using symbols,
y  =  3x  Change in y = 3 Change in x  
or  x  =  3 = slope 
Q How do these changes show up on the graph?
A Here again is the graph of y = 3x  1 , showing two different choices for x and the associated y.
To summarize:
Slope of a Line
The slope of a line is given by the ratio
Definition of the Slope For positive m, the graph rises m units for every 1unit move to the right, and rises y = mx units for every x units moved to the right. For negative m, the graph drops m units for every 1unit move to the right, and drops mx units for every x units moved to the right.

Fill in the slopes of the following lines.
Getting Familiar with Slopes 
Q Two points, say (x_{1}, y_{1}) and (x_{2}, y_{2}), determine a line in the xyplane. How do we find its slope?
A Look at the following figure.
As you can see in the figure, the rise is y = y_{2}  y_{1}, the change in the ycoordinate from the first point to the second, while the run is x = x_{2}  x_{1}, the change in the xcoordinate.
To summarize:
Computing the Slope of a Line
Computing the Slope of a Line We can compute the slope m of the line through the points (x_{1}, y_{1}) and (x_{2}, y_{2}) using
Examples 
Before trying the exercises, you should go on to the next tutorial: Part B: Finding the Equation of a Line.