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1. Introduction

What is a differential equation? In words, a differential equation (DE)
is an equation involving some unknown function y(x) (of possibly more than
one variable) as well as derivatives of y.

Examples 1.1.

A.
dy

dx
= ex + x2 This is an equation involving the derivative of y, and is

called a first order DE, since it involves only the first derivative of the
unknown function y. A solution of a differential equation is a function
y(x) that satisfies the given equation. Thus the solution to the above
equation is:

y =

∫
ex + x2 dx = ex +

x3

3
+ C,

where C is any constant. Thus it seems that a DE can have many solu-
tions.

Eg. here, y = ex+
x3

3
+9, ex+

x3

3
+1, 003, ex+

x3

3
+π are all particular

solutions.

ex +
x3

3
+C is called the general solution, since any solution is of this

form. (You can check that it is, in fact, a solution by substituting y back
in the original equation.)

B. Let u(t) be the position of a particle at time t. Find u(t) if

m
d2u

dt2
= ku+

du

dt
.

Here, m and k are constants. Our job is to find a function u(t) which
satisfies the equation. There is no obvious answer, but we will be able
to solve it later in the course. This equation is called a second order
DE, since it involves the second derivative of the unknown function u.

The DE’s in Examples A and B are collectively referred to as ordinary
DE’s, since they deal with ordinary—as opposed to partial—derivatives.
Thus, the DE in Example A is a first order ordinary DE, while the one
in Example B is a second order ordinary DE.

C. Let g(x, t) be a function of x and t. Then

∂g

∂x
=
∂2g

∂t2
+ 4 sin(xt)

is a DE in the unknown function g(x, t) of two variables x and t. This is
called a partial DE, since it involves partial derivatives of the unknown
function g. These are harder to solve, and you won’t know how until
Math 143 or thereabouts. (This course deals only with ordinary DE’s.)
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Finally, there are special types of ordinary DE’s called linear DE’s. These
have the form

Linear: an(x)
dny

dxn
+an−1(x)

dn−1y

dxn−1
+· · ·+a1(x)

dy

dx
+a0(x)y = g(x) (∗)

This is a linear equation of order n (since the highest derivative is the
nth). The an(x) are called the coefficients and may be constants or even
horrible functions.

Examples 1.2. Linear DEs

(1) Equations A and B above are both linear DE’s, since they can be
rewritten with all the derivative terms on the left, making them look
like (*).

(2) The equation

4
d2y

dx2
− 3

dy

dx
− 2y = excosx

has coefficients a2(x) = 4, a1(x) = −3, a0(x) = −2. It is a second
order linear DE with constant coefficients.

(3) The equation

d2y

dx2
+ 3x2 dy

dx
+ 4xy = ex sinx

has coefficients a2(x) = 1, a1(x) = 3x2, a0(x) = 4x. It is a second
order linear DE with non-constant coefficients.

(4) The equation

d2y

dx2
+ 3y

dy

dx
+ 4xy = ex sinx

is not linear, since the coefficient of dy/dx is not a function of x.
(5) Here is a nice one:

y′′ + y = 0

This in fact has solutions y = sinx and also y = cosx. To check that
they are in fact solutions, plug them in and see! Moreover, if A and
B are any constants, then

y = A sinx+B cosx

is also a solution—again, check by plugging in. (In fact, this is the
general solution.).

Methods of Solving Two broad methods:
I Analytical. This is the way we solved the first one above. It means giving
an exact solution in terms of known functions by using various methods we
shall study.
II Numerical. Many DE’s are impervious to analytical methods, so there
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are ways of getting approximate solutions via the use, usually, of computers.
These give solutions as accurately as you like, but in terms of numbers rather
than known functions. For example, it might say that the solution to B
above has the property that:

u(1) = 4.0985, u(1.3) = 5.69584, etc.

This does allow one to draw its graph, but doesn’t tell one what u(t) is,
but it is useful in applications where you couldn’t care whether it’s a known
function, and only need u(1), u(1.3) etc. We’ll do mainly analytical meth-
ods, as they provide understanding. Currently available computer software
does numerical solving.

Discussion Thread Suggestions Think about the difference between
particular and general solutions, and about the constant of integration.
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2. First Order Linear DEs

Recall that these involve only the first derivative, and are, in addition,
linear. Here, y will always be an (unknown) function of x, and we are
required to find y. Recalling that the general form of a 1st order linear DE
is:

a1(x)
dy

dx
+ a0(x)y = g(x),

we divide both sides by a1(x) to get an equation of the form

y′ + p(x)y = f(x) Standard Form of First Order Linear DE

We look at two specific types of these:

A. Easy: (p(x) = 0)
These have the form y′ = f(x), and so are like the very first one we
looked at in Section 1. One solves them by doing a simple integration,

and the solution is y =

∫
f(x) dx.

Examples of Easy Ones
(a) Solve y′ = sinx.

Solution: y =

∫
f(x) dx =

∫
sinx dx = − cosx + C. (general

solution)

(b) Solve y′ =
1

1 + x2

Solution: y =

∫
f(x) dx =

∫
1

1 + x2
dx = arctanx+ C. (general

solution)
B. General First Order Linear:

As noted above, these have the form y′ + p(x)y = f(x). Here, p(x) and
f(x) are given functions of x.
Examples
(a) y′ + xy = x2 (p(x) = x, q(x) = x2)
(b) y′ − 2xy = x (p(x) = −2x, q(x) = x)
(c) xy′ + 2y = sinx (Not in the standard linear form, but dividing by

x gives y′ +
2

x
y =

sinx

x
.)

Method of Solution of y′ + p(x)y = f(x).
Look at the left hand side. It looks a little like the product rule...Multiply
both sides by a ”certain” function µ(x). Get:

µ(x)y′ + p(x)µ(x)y = µ(x)f(x)

If only

p(x)µ(x) was equal to µ′(x) (∗)
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Then we would have:

µ(x)y′ + µ′(x)y = µ(x)f(x)

ie.
d

dx
[µ(x)y] = µ(x)f(x)

so

µ(x)y =

∫
µ(x)f(x) dx+ C,

giving

y =
1

µ(x)

[∫
µ(x)f(x) dx+ C

]
Gen Solution of First Order Linear DE

That’s all well & good, but we still don’t know what µ(x) is!
However, by (*), we must have p(x)µ(x) = µ′(x). That is,

µ′(x)

µ(x)
= p(x)

ie.
d

dx
[lnµ(x)] = p(x)

or µ(x) = e
∫
p(x)dx ... Integrating Factor

Thus our method of solution is given as follows:

Solving a First Order DE

(1) Make sure that the coefficient of y′ is a 1 (by dividing if necessary).

(2) Set µ(x) = e
∫
p(x)dx.

(3) Then the general solution is y =
1

µ(x)

[∫
µ(x)f(x) dx+ C

]
.

Examples 2.1.

A. We solve y′ + 2y = e−x, subject to the initial condition y(0) = 3.
B. We solve y′ − 2xy = x, subject to the initial condition y(0) = 1.
C. Solve xy′ + 2y = sinx.

Here is a bit of theory. We saw that, not only can we solve a first order
linear DE by the above method, but also that the solution was ?forced? on
us; that is, it is unique. A generalization of this is the following.
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Theorem 2.2. Picard’s Theorem (Existence and uniqueness of solu-
tions to 1st order DEs) Given any DE of the form

dy

dx
= f(x, y)

with initial conditions y(x0) = y0, assume that both f and ∂f/∂y are
continuous on some rectangle containing (x0, y0). Then there is a unique
solution y = φ(x) defined on some interval (x0 − h, x0 + h).
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3. Separable DEs

Here we consider general DEs of the form

dy

dx
= f(x, y)

but which can be rewritten in the form

M(x)dx = N(y)dy.

Thus we have “separated the xs from the ys,” so to speak. We can now
integrate both sides to get a relationship between x and y. If we can then
solve for y in terms of x, then we have an explicit solution, else we just have
an implicit solution.

Examples 3.1.

A. Solve
dy

dx
=

3x2 + 4x+ 2

2(y − 1)
subject to y(0) = 1.

B. Exponential growth: Solve
dy

dx
= ky (k > 0 constant) subject to y(0) =

y0
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4. Applications of First Order DEs

A. Exponential Decay
The rate of (radioactive) decay of a substance is proportional to the
amount of substance left in the sample. Thus assume one begins at time
t = 0 with a quantity Q0 of the stuff. Our task is to find an equation
for the quantity Q (of undecayed substance) left after time t.
Answer In words, the rate of decrease of Q is proportional to Q. That
is,

−dQ

dt
= kQ

where k is some constant. This is a separable DE with solution

Q = Ce−kt (C = constant)

What does C represent? Well, at time t = 0, Q = Q0; an initial condi-
tion.
Plugging in: Q0 = Ce−0 = C. Thus C = Q0. whence:

Q = Q0e
−kt Exponential Decay

Question How long does it take for half the sample to decay? (This
time is called the half-life.)
Answer In ”class,” we obtain

t1/2 =
ln 2

k
Half-life

Note t1/2 is independent of the amount Q0 you started with.
Example (From Calc 2) Carbon dating is based on the fact that ra-
dioactive Carbon-14 (which originates from the upper atmosphere when
nitrogen is exposed to cosmic radiation) is absorbed by living plant and
animal tissue along with non radioactive Carbon-12. When the plant
or animal dies, the absorption stops, and the Carbon-14 decays into
lead. When a fossil is analyzed, the amounts of both isotopes present
are measured, and compared with the ratios assumed to be present in
the environment at the time they lived.

Given that Carbon-14 has a half-life of 5750 years, and that tests on
a certain fossil show that 95% of its Carbon-14 has decayed, how old is
the fossil?

B. Exponential Growth
If you invest $P at an interest rate of k compounded every ∆t years,

then the amount you have at time t+ ∆t is

A(t+ ∆t) = A(t) + kA(t)∆t.

For continuous compounding, we let ∆t→ 0, and this leads to the DE

dA

dt
= kA,
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with solution

A = A0e
kt Exponential Growth

with

tD =
ln 2

k
Doubling Time

Example The population ten years ago was 1,000. It is now 3,250.
Assuming exponential growth, what will it be in two years’ time?

C. Epidemics Let a population of n susceptible people contain p(t) infected
people at time t. Then q(t) = n − p(t) is the number of susceptible, as
yet uninfected, people. We assume the disease is spread by contact,
and that each person comes into contact with k other people from the
population per unit time on average. (eg. k people per week, if this is
our unit of time), and that the probability of getting infected through a
single contact is α.

Now, p(t) is the number of people infected at time t.
Question A little time, ∆t later, how many people are now infected?
Answer First look at one unit of time later. Since each uninfected sus-
ceptible person has k contacts per unit time, k · p(t)/n of these contacts
are with infected people. (The fraction of susceptible people infected
is p(t)/n.) Thus, in a time period of ∆t units of time, each uninfected
person has kp(t)∆t/n contacts. This is for a single uninfected person.
Since there are q(t) uninfected susceptible people, the total number of
contacts between uninfected and infected people is q(t)kp(t)∆t/n. Fi-
nally, since the fraction α of these contacts results in new cases, the
number of people infected in time ∆t is

∆p =
αkp(t)q(t)∆t

n
.

Thus,
∆p

∆t
=
αkp(t)q(t)

n
.

Taking limits as ∆t → 0, taking αk = σ, and dropping the functional
notation gives

dp

dt
=
σpq

n
=
σp(n− p)

n
.

This is a separable equation, with

ndp

p(n− p)
= σdt

i.e. (1

p
+

1

n− p

)
dp = σdt,

whence

ln
( p

n− p

)
= σt+ C.
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giving
p

n− p
= Aeσt

(by the usual arguments). To get the constant, we substitute the initial

conditions p = p0 at time t = 0, giving A =
p0

n− p0
, so that the solution

is
p

n− p
=
( p0

n− p0

)
eσt.

We now solve for p to get the logistic equation:

p =
np0

p0 + (n− p0)e−σt
Logistic Equation

Graph:

D. Mixing We do an example. Let a tank have Q0 lbs. of salt in 100 gals.
water. A solution of 1/4 lb/gal of salt-water is entering the tank at a
rate of 3 gals/min, being stirred constantly. Water is also leaving the
tank at the same rate. Find an expression for the amount of salt Q(t)
in the tank at time t.
Solution The total amount of salt is Q = Q(t) at time t. Thus the
concentration is Q/100 lbs. salt per gallon at time t. We write down the
equation

Rate of increase in Q = Rate salt is entering− Rate salt is leaving

dQ

dt
=

1

4
· 3− 3 · Q

100
lbs/min.

This is a linear DE with solution

Q(t) = 25(1− e−3t/100) +Q0e
−3t/100

↑ ↑
Amount of new salt a decay term: Amount of

original salt present
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5. Theory of linear differential equations

We saw in Section 1 that a linear DE or order n has the form

an(x)
dny

dxn
+ an−1(x)

dn−1y

dxn−1
+ · · ·+ a1(x)

dy

dx
+ a0(x)y = g(x) (∗)

We are interested in finding solutions to (*), that is, a function or family
of functions y(x) satisfying this equation, possibly subject to some ”initial
condition(s)” and defined for all values of x in some interval. It is customary
to assume that an(x) is nowhere zero in the interval of interest, so, as in
Section 2, we divide by it to get the ”standard form:”

Standard Form of nth Order Linear DE

dny

dxn
+ p1(x)

dn−1y

dxn−1
+ p2(x)

dn−2y

dxn−2
+ · · ·+ pn−1(x)

dy

dx
+ pn(x)y = f(x)

(Instead of p1(x), p2(x), p3(x), . . . we avoid subscripts by using p(x), q(x), r(x), . . .
etc in equations of low order.

Examples 5.1. Linear DEs

A. First order linear DE in standard form: y′ + p(x)y = f(x)
We already know how to solve these...

B. Second order linear DE in standard form: y′′ + p(x)y′ + q(x)y = f(x)
C. A mass m on a spring subjected to a varying force F (t) has displacement

u(t) satisfying an equation of the form

m
d2u

dt2
+ c

du

dt
+ ku = F (t)

for given constants k and c. (We’ll see why later.) This kind has con-
stant coefficients.

D. Bessel’s Equation

x2y′′ + xy′ + (x2 − α2)y = 0

for a constant α. This pops up in many applications, such as acoustics
and electromagnetism.
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Theorem 5.2. Existence and uniqueness theorem for linear
DEs
Suppose that p1(x), p2(x), . . . pn(x) and f(x) are continuous on an open
interval (a, b) containing the point x0. Then:

(1) The equation

dny

dxn
+ p1(x)

dn−1y

dxn−1
+ · · ·+ pn−1(x)

dy

dx
+ pn(x)y = f(x)

has an n-parameter family of solutions (called the general so-
lution) defined over the entire interval (a, b.)

(2) There is exactly one solution y(x) to this DE satisfying any spe-
cific set of “initial conditions”

y(x0) = y0, y
′(x0) = y1, . . . , yn−1(x0) = yn−1.

Example 5.3.
The linear DE y′′ − 4y = 8 has the general solution y = Ae2x + Be−2x − 2.
Check that it is a solution mentally...
If we impose the initial conditions y(0) = 2, y′(0) = 4, we get the unique
solution y = 3e2x + e−2x − 2. Check that it is a solution mentally...

General Strategy for Solving Linear DEs
To solve linear DE’s we first consider some special kinds of linear DEs:

Definition 5.4. A linear DE is homogeneous if it has the form

dny

dxn
+ p1(x)

dn−1y

dxn−1
+ p2(x)

dn−2y

dxn−2
+ · · ·+ pn−1(x)

dy

dx
+ pn(x)y = 0,

so that here, f(x) = 0.
Given any linear DE

dny

dxn
+ p1(x)

dn−1y

dxn−1
+ p2(x)

dn−2y

dxn−2
+ · · ·+ pn−1(x)

dy

dx
+ pn(x)y = f(x),

then its associated homogeneous equation is obtained by replacing f(x)
by 0.

Thus, eg. the associated homogeneous equation of y′′+6y = 77x2 is y′′+6y =
0.

What’s so special about these? Well...

Theorem 5.5. Difference of solutions to a linear DE
If u(x) and v(x) are any two particular solutions to the general linear
DE, then u(x)− v(x) is a solution to the associated homogeneous DE.
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Example 5.6. Consider what this says about the linear DE y′ = cosx.

We prove the theorem in the video.

Corollary 5.7. General form of Solution to a Linear DE
The general solution to a linear DE has the form

y = CF + PI

where CF is the complementary function: the general solution to
the associated homogenous DE, and PI is a particular integral: any
one particular solution to the (original) DE .

We prove the corollary in the video.
Thus, all we need to do is learn two things:

(1) Finding complementary functions (meaning solving homogeneous lin-
ear DEs).

(2) Finding particular integrals (meaning finding a single solution to the
original equation). One is enough.

Examples 5.8.
A. Solve the silly little first order linear DE y′ = sinx.
B. General First Order Linear DEs revisited

Let’s go back to our solution of first order linear DEs:

y =
1

µ(x)

[∫
µ(x)f(x) dx+ C

]
.

To get a PI, (particular solution of the original equation) just choose
the constant C to be zero:

PI =
1

µ(x)

∫
µ(x)f(x) dx.

To get the CF, put f(x) = 0, (for the associated homogenous equation)
to get

CF = C · 1

µ(x)
Solution of homogenous equation

Adding them together:

y = CF + PI

= C · 1

µ(x)
+

1

µ(x)

∫
µ(x)f(x) dx

=
1

µ(x)

[∫
µ(x)f(x) dx+ C

]
,

which is the original formula for the general solution!
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What do Complementary Functions Look Like?
We saw in the above example that the CF for a first order linear DE has
the form Cu(x), where C is some arbitrary constant.

So, you should not be surprised to know that, for a second order linear
DE the CF has the form Au(x) +Bv(x), where A and B are two arbitrary
constants. For a third order linear DE, it would look like Au(x) +Bv(x) +
Cw(x), and so on.

Further the functions u(x), v(x), w(x), . . . are individual solutions of the
homogenous equation and also linearly independent, meaning that no
one of them can be expressed as a linear combination of the others (that is,
as a constant times one plus a constant times another plus a constant times
yet another...) For instance,

sinhx =
1

2
ex − 1

2
e−x,

expresses sinhx as a linear combination of ex, and e−x, so the three functions
sinhx, ex, and e−x are not linearly independent.

Q: So how do I tell at a glance whether a collection of, say, three solutions
u(x), v(x), w(x) of the homogenous equation is independent?
A: Take their Wronskian: 1

W [u, v, w](x) =

∣∣∣∣∣∣
u(x) v(x) w(x)
u′(x) v′(x) w′(x)
u′′(x) v′′(x) w′′(x)

∣∣∣∣∣∣
If you get any nonzero function, they are independent. If you get the zero
function, they are dependent (i.e., not independent).

Examples 5.9.
A. Solve the less silly DE y′′ + y = 0.
B. Solve the equally less silly DE y′′ − y = 0.
C. Now solve y4 − y = 0. (Part of that is left to the exercises...)

General form of the Wronskian:

W [u1, . . . , un](x) =

∣∣∣∣∣∣∣∣∣
u1(x) u2(x) · · · un(x)
u′1(x) u′2(x) · · · u′n(x)

...
...

. . .
...

u
(n−1)
1 (x) u

(n−1)
2 (x) · · · u

(n−1)
n (x)

∣∣∣∣∣∣∣∣∣
Some underlying theory:

1Named after Josef Maria Hoene Wronski (1778–1853) whose only contribution to
mathematics appears to have been the Wronskian, and who eventually went insane.
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Theorem 5.10. Superposition Principle
If u1(x), u2(x), . . . , uk(x) are any solutions to a homogeneous linear DE,
then so is any linear combination of them:

y(x) = A1u1(x) +A2u2(x) + · · ·+Akuk(x). (Ai arbitrary constants)

Proof in the videos.
Note This does not work for non-homogeneous ones—see the homework.

Finally, what we said above, which now seems more plausible in view of
the superposition principle:

Theorem 5.11. Form of the CF
The general solution of the homogenous equation

dny

dxn
+ p1(x)

dn−1y

dxn−1
+ p2(x)

dn−2y

dxn−2
+ · · ·+ pn−1(x)

dy

dx
+ pn(x)y = 0,

is

y(x) = A1u1(x) +A2u2(x) + · · ·+Anun(x). (Ai arbitrary constants)

where u1(x), u2(x), . . . , un(x) are any n independent specific solutions.

Partial Proof That it is a solution follows from the superposition prin-
ciple. that it is the only solution rests on the Existence and Uniqueness
Theorem 5.2, and some linear algebra in combination with results about
the Wronskian of solutions to homogeneous linear DE’s (namely, that the
Wronskian of such functions is either the zero function, or it is everywhere
nonzero; one of the exercises deals with this for the second order DE case.
The higher order cases are similar, but require a knowledge of minors in and
the theory of determinants.)
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6. Solving Homogeneous Second Order Linear DEs with
Constant Coefficients

Here we see how to cook up the us and vs in the nice case of constant
coefficients for second order homogeneous linear DEs. First, a linear 2nd
order homogeneous DE with constant coefficients has the form

ay′′ + by′ + cy = 0 Homog. Linear DE Const. Coeffs. (*)

where a, b, and c are constants (a 6= 0).
We wish to find the two independent solutions u(x) and v(x). We’ve seen

that, no matter how we cook these up, (even by fortuitous guessing!), we will
get the general solution this way as long as they are independent, namely:

y(x) = Au(x) +Bv(x) (A,B arbitrary constants)

We try as a good guess, a solution of the form:

y = emx

for some suitable constant m. In the video, we see how this leads to the
auxiliary equation

am2 + bm+ c = 0.

From Baby Math, its roots depend on whether the discriminant b2 − 4ac is
positive, zero, or negative.

Theorem 6.1. Distinct Real Roots
If the discriminant b2 − 4ac > 0, then the general solution of equation
(*) is

y(x) = Aem1x +Bem2x,

where m1 and m2 are the roots of the auxiliary equation.

Examples 6.2.
A. Find the GS of y′′ + 5y′ + 6y = 0.
B. Find the GS of y′′ + y′ − 2y = 0 subject to y(0) = y′(0) = 1.

Theorem 6.3. Repeated Real Roots
If the discriminant b2 − 4ac = 0, then the general solution of equation
(*) is

y(x) = Aemx +Bxemx,

where m is the repeated root of the auxiliary equation.



6. Solving Homogeneous Second Order Linear DEs with Constant Coefficients 18

Example 6.4.
Find the GS of y′′ + 2y′ + y = 0.

Theorem 6.5. Complex Roots
If the discriminant b2 − 4ac < 0, then the general solution of equation
(*) is

y(x) = eαx[Acosβx+Bsinβx],

where the roots of the auxiliary equation are m = α± iβ.

Examples 6.6.
A. Find the GS of y′′ + y′ + y = 0.
B. Find the GS of y′′ + y = 0.
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7. Solving Nonhomogeneous Second Order Linear DEs with
Constant Coefficients: Method of Undetermined

Coefficients

Nonhomogeneous Second Order Linear DEs with constant coefficients
have the form

ay′′ + by′ + cy = f(x) Linear DE Const. Coeffs. (*)

with some nonzero f(x). To solve these, we first recall Corollary 5.7:

Corollary 5.7. General form of Solution to a Linear DE
The general solution to a linear DE has the form

y = CF + PI

where CF is the complementary function: the general solution to
the associated homogenous DE, and PI is a particular integral: any
one particular solution to the (original) DE .

In the preceding section we saw how to find CFs, so now we focus on
finding PIs for some (but not all...) of these beasts, thereby completing the
process of solving (some of) them completely. The method of undeter-
mined coefficients is a “guessing method.” We’ll learn it via examples,
which we go through in the video.

Examples 7.1.
A. Solve completely: y′′ − 3y′ − 4y = 9
B. Find a particular solution of ay′′ + by′ + cy = K (Kconstant 6= 0)
C. Solve completely: y′′ + 2y′ + y = 4x
D. Solve completely: y′′ + y = 4x2 − 1
E. Solve completely: y′′ − 3y′ − 4y = e2x

F. Solve completely: y′′ − 3y′ − 4y = e−x where we encounter a glitch...

Undetermined Coefficients

f(x)f(x)f(x) What You Try for yyy

A polynomial y = A general polynomial of the same degree

A sinx,B cosx, or their sum y = Q sinx+R cosx

Aeαx y = Qeαx

Glitches If any of the summands in the expression on the right is already a
solution of the homogenous equation, then you multiply the entire expression
on the right by x. If any one of the new terms you now get still a solution
of the homogenous equation,, multiply again by x, and so on.
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Q&A
Q: S’pose you have, say, f(x) = sinx+ e6x?
A: First find a PI for ay′′+by′+cy = sinx, then ditto for ay′′+by′+cy = e6x.
Then your desired PI is the sum of the two PIs you just obtained. (You will
see why in the exercises.)
Q: What if you have to solve, say, ay′′ + by′ + cy = x sinx?
A: This is a product of two functions (x and sinx) you know how to deal
with. For x, you would try: Px+Q; for sinx, you would try R cosx+Tsinx.
Then, for the product, you try

(Px+Q)(R cosx+ T sinx) = Ux cosx+ V x sinx+W cosx+ Z sinx

and solve for the constants U, V,W,Z by substituting. This works for any
product.

Example 7.2. Solve y′′ + 4y = xex + x sin(2x).
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8. Homogeneous 2nd order DE’s with Nonconstant
Coefficients: Reduction of Order

Nonhomogeneous Second Order Linear DEs with nonconstant coefficients
are harder to solve than those with constant coefficients. Recall that these
have the (standard) form

y′′+p(x)y′+q(x)y = 0 Linear Homog. DE NonConst. Coeffs. (*)

Here, p(x) and q(x) are given functions of x (not both constant in the
case of interest here). In this case, we can’t easily find a nice CF as we did
with the constant coefficient ones. We’ll eventually see how to find at least
one solution using power series, although we need two independent solutions
in general. In the meantime, we pretend that, from Mars, say, we have been
given one of the solutions, u(x), of equation (*). We now find out how to
(sometimes) find the other one. To get the other one, we try a solution of
the form

y(x) = h(x)u(x).

Substituting this into the DE gives, as we shall see in the lecture,

h{u′′ + pu′ + q′u}+ h′{2u′ + pu}+ h′′u = 0.

The first term in braces is zero, as u is a solution of (*). We recognize what
is left as a linear equation for h’(x), and ultimately obtain

h(x) =

∫
e
−
∫ (

2u′
u

+p
)
dx
dx,

which we can manipulate a little to get

h(x) =

∫
e−
∫
p(x)dx

u2(x)
dx

This gives h(x), and hence the other solution,

v(x) = h(x)u(x).

Examples 8.1.

A. (a) Show that y = x is a solution of Legéndre’s equation

(1− x2)y′′ − 2xy′ + 2y = 0 (−1 < x < 1).

(b) Find a linearly independent second solution, and hence the GS.

B. Given that y =
sinx√
x

is a solution of x2y′′+xy′+
(
x2 − 1

4

)
y = 0, obtain

the general solution.
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9. Variation of Parameters

Now that we (kind-of) know how to solve general homogeneous equations,
it remains to find a way of solving the non-homogeneousones ones by finding
PIs (particular integrals) whether or not the coefficients are constant.

Recall that a second order linear DE in general form looks like this:

y′′ + p(x)y′ + q(x)y = f(x) . . . (∗)

The Method

(1) First get the two linearly independent complementary functions (some-
how or other). Call them y1(x) and y2(x).

(2) For the PI, we try a solution of the form

y = u(x)y1(x) + v(x)y2(x). . . . (∗∗)

Taking derivatives

y′ = (u′y1 + v′y2) + (uy′1 + vy′2).

At this point, we insist that the first summand, u′y1 + v′y2, is zero. This
gives us one equation:

u′y1 + v′y2 = 0 . . . (1)

(We are so confident at this point, that, not only do we want to find a
solution of the form (**), but we hope to find a “nice” u and v so that (1)
also holds!)

So now,

y = uy1 + vy2

y′ = uy′1 + vy′2

and y′′ = u′y′1 + v′y′2 + uy′′1 + vy′′2 .

Substituting and collecting terms gives

u [y′′1 + py′1 + qy1]︸ ︷︷ ︸+v [y′′2 + py′2 + qy2]︸ ︷︷ ︸+u′y′1 + v′y′2 = f(x)

0 0

giving

u′y′1 + v′y′2 = f(x)

as our second equation. So we must solve the system

u′y1 + v′y2 = 0

u′y′1 + v′y′2 = f(x).

This will have a unique solution if

det

∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣ is never zero.

But this is just the Wronskian of two independent functions!!
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Summary of Variation of Parameters Method (In Four Very Easy
Steps)

(1) Get the CFs y1 and y2.
(2) Solve the system

u′y1 + v′y2 = 0

u′y′1 + v′y′2 = f(x).

for u′ and v′.
(3) Integrate u′ and v′ to get u and v.
(4) The PI is then yp = uy1 + vy2.

Warning Make sure that the original DE is in the form (*) before you
begin, so that the coefficient of y′′ is 1. (Else you’ll get the wrong f(x).)

Example 9.1. Determine the GS of y′′ + y = secx; (0 < x < π/2).
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10. Mechanical Vibrations

S’pose a mass m is suspended from a spring, stretching it a length ∆L.
There are then two forces acting on the spring: gravity (magnitude mg,

directed downward; g = 9.8m/sec2 or 32ft/sec2) and an elastic force (mag-
nitude k∆L. This is Hooke’s Law. k is the elastic constant.) When the
spring is in equilibrium, these forces are equal:

mg = k∆L.

This gives a little formula for the calculation of the elastic constant of any
spring:

k =
mg

∆L
Calculation of elastic constant k

Notes

(1) mg is the weight (measured in newtons (mks) or pounds (eng)).
(2) Mass m is measured in kilograms (mks) or slugs (eng) and equals

weight/g.

Now, what if an external varying downward force F (t) is added, and the
spring is displaced a further distance u from its equilibrium position? We
denote its vertical position (measured downwards) by u. We take u = 0 at
the equilibrium position. Then the mass experiences four forces:

(1) An elastic force −k(u+ ∆L), directed upwards (up is negative)
(2) A damping force −cu̇, proportional to the velocity, directed against

the direction of velocity. (c = damping constant)
(3) Gravity mg, directed downwards
(4) The external force F (t)

Adding these up gives the net (downward) force:

mg − k(u+ ∆L)− cu̇+ F (t).

= mg − ku−mg − cu̇+ F (t) (using k∆L = mg)

= −ku− cu̇+ F (t)

Newton’s law now tells us that this net downward force equals mass ×
acceleration, mü. Thus,

mü = −ku− cu̇+ F (t)

giving

mü+ cu̇+ ku = F (t), Motion of a stretched spring

which—surprise surprise—is a second order linear DE (with constant coef-
ficients).



10. Mechanical Vibrations 25

Notes

(1) This formula says that we don’t have to take gravity into account.
What happened to gravity? Put another way, springs on Mars be-
have just like springs on Earth (except for the equilibrium position..)

(2) m, c and k are all nonnegative constants.

We intend to solve the equation as generally as possible. This entails first
finding the CF. In the videos, we solve for the CF in four cases:

A. Undamped motion (c = 0)
We obtain the GS

u = R cos(ω0t+ δ), where ωo =

√
k

m
Simple harmonic motion

Examples 10.1. of Simple Harmonic Motion

A. Find the period of oscillation (that is, the time it takes for one complete
cycle) and also the motion of a spring-mass system if m = 10 slugs
(lb sec2/ft), k = 5, given that it starts at rest, stretched 2 inches below
the equilibrium position.

B. A mass of weight 10 lb stretches a steel spring 2 inches. Find the period
of oscillation.

C. The end of the spring in Part (B) spring is stretched 2” below its equi-
librium position and then released. Determine the subsequent motion.

B. Damped motion (c 6= 0)

Case I: Overdamped (c2 − 4mk > 0) We obtain the GS

u = Aer1t +Ber2t, where ri =
−c±

√
c2 − 4mk

2m
Overdamped harmonic motion

Case II: Underdamped (c2 − 4mk < 0) We obtain the GS

u = Ee−
c

2m
t cos(µt+ δ), where µ =

1

2m

√
4mk − c2

Underdamped harmonic motion

Case III: Critically damped (c2 − 4mk = 0) We obtain the GS
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u = (A+Bt)e−
c

2m
t Critically damped harmonic motion

Examples 10.2. of Damped Harmonic Motion

A. A 32 lb weight stretches a spring 2 feet. The weight is then pulled
down an additional 6” and released. If the resistance of the medium is
4 lb/(ft/sec), find the subsequent motion, sketching its graph.

B. What value of c should a shock absorber provide to stop all vibrations
of a car spring that can be compressed an inch by a 150 lb force?

Forced Vibrations
Here we consider a forcing function F (t) = F0 cosωt, and consider the un-
damped case (c = 0). Thus the equation is:

mü+ ku = F0 cosωt.

Let ω0 =
√

k
m , the angular frequency in the unforced case.

Case 1. ω 6= ω0 We obtain the solution

u = A cosω0t+B sinω0t+
F0

m(ω2
0 − ω2)

cosωt.

Case 2. ω = ω0 We obtain the solution

u = A cosω0t+B sinω0t+
F0

2mω0
t cosω0t.

Note that here, u→ +∞ as t→ +∞ (resonance).
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11. Laplace Transforms

Laplace transforms are a useful tool in solving DEs. In real life, it often
happens that the “forcing” function (the right-hand side of a nonhomoge-
neous DE) is either discontinuous, non-differentiable, or impulsive. Such
functions can easily be dealt with using Laplace Transforms. Furthermore,
Laplace Transforms can be used to convert systems of differential equations
into systems of linear algebraic equations (but more later?) First, we do
some theory.

Definition 11.1. Let f(t) be defined for t ≥ 0. Then the Laplace Trans-
form (LT) of f is the function F = L[f ] of given by the formula

F (s) =

∫ +∞

0
e−stf(t)dt,

provided the integral exists.

Notes

(1) The natural domain of this function (of s) depends on the values of
s for which the integral is defined.

(2) The domain of the original function must include [0,+∞), or else
the integral is not defined. (We won’t worry about cases when it is
improper at 0).

(3) The defining integral is is an improper integral because of the upper
limit, and it may well diverge. Whether it diverges or converges
depends on the original function f.

Examples 11.2.

A. If f(t) = 1, then F (s) =
1

s
.

B. If f(t) = eat, then F (s) =
1

s− a
provided s > a.

C. If f(t) = t, then F (s) =
1

s2
.

D. f(t) = t2

E. f(t) = tn

F. f(t) = cos bt
G. f(t) = sin bt

H. f(t) = uc(t) = 1
2

(
1 + (t−c)

|t−c|

)
I. Linearity of LT (Proof in exercise set) The LT of a sum is the sum of the

LTs, and the LT of a constant times a function is that constant times
the LT of the function.

We now look to see when we can be guaranteed that the Laplace transform
exists. First we need:
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Theorem 11.3. Comparison Test Let f and g be two functions that
are integrable on the interval [M,A] for every A > M S’pose that, for t ≥

M, |f(t)| ≤ g(t), and that

∫ +∞

M
g(t)dt converges. Then so does

∫ +∞

M
f(t)dt.

Proof. We prove the simpler case in which f(t) ≥ 0 for all t ≥M. The inte-

gral

∫ +∞

M
f(t)dt is defined as lim

A→+∞

∫ A

M
f(t)dt, so it suffices to prove that

the limit exists (and is finite). Now , since f(t) ≥ 0, the integral

∫ A

M
f(t)dt

is an increasing function of A (because its derivative with respect to A is
f(A) ≥ 0) and so one of two things can happen: either it is unbounded,
in which case it approaches +∞ as A → +∞, or it is bounded, in which
case it approaches a finite limit L as A→ +∞ (and hence converges). The

same is true for

∫ A

M
g(t)dt. But since we are told that

∫ +∞

M
g(t)dt converges,∫ A

M
g(t)dt must be bounded. Also, since f(t) ≤ g(t) for all t ≥M, we have∫ A

M
f(t)dt ≤

∫ A

M
g(t)dt,

and so

∫ A

M
f(t)dt too must be bounded, and hence convergent. �

Definition 11.4. The function f has a jump discontinuity at a if limx→a− f(x)
and limx→a+ f(x) both exist (and are finite). f is piecewise continuous
if it has at most a finite number of jump discontinuities and is continuous
everywhere else.

Fact: Piecewise continuous functions are Riemann integrable.

Definition 11.5. The function f(t) has exponential order eat if there
exist positive numbers M and K such that |f(t)| ≤ Keat for t ≥M.

Theorem 11.6. Existence of the Laplace Transform S’pose that:

(i) f is piecewise continuous on every interval [0, A] (ie: it has only finitely
many discontinuities in each finite interval, but may have infinitely
many on [0,+∞])

(ii) f(t) has exponential order eat.

Then F (s) exists for s > a.

Proof. Because f is piecewise continuous, so is e−stf(t) and hence the inte-
gral ∫ M

0
e−stf(t)dt

exists for every M > 0. As f has exponential order,

|f(t)e−st| ≤ eate−st = e(a−s)t
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from some value of t onwards. also,
∫ +∞

0 e(a−s)t dt converges for s > a,

whence, by the Comparison test, so does the integral
∫ +∞

0 e−stf(t)dt that
defines F (s). �

Further properties of the LT:

Proposition 11.7. If F (s) exists for s > k, then:

(a) L[eatf(t)](s) exists for s > a+ k and

L[eatf(t)](s) = F (s− a) Translation Rule

(b) L[tnf(t)](s) exists for s > k and

L[tnf(t)](s) = (−1)n
dn

dsn
F (s) Derivative of LT

(c) L[f ′](s) exists for s > k and

L[f ′](s) = sF (s)− f(0) LT of Derivative

(d) L[f ′′](s) exists for s > k and

L[f ′′](s) = s2F (s)− sf(0)− f ′(0) LT of 2nd Derivative

(e) L[f (n)](s) exists for s > k and

L[f (n)](s) = snF (s)− sn−1f(0)− sn−2f ′(0)− sn−3f ′′(0)− · · · − f (n−1)(0)
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f(t)f(t)f(t) F (s)F (s)F (s) f(t)f(t)f(t) F (s)F (s)F (s)

1
1

s
eatf(t) F (s− a)

t
1

s2
eat cos bt

s− a
(s− a)2 + b2

tn
n!

sn+1
eat sin bt

b

(s− a)2 + b2

eat
1

s− a
uc(t)

e−sc

s

cos bt
s

s2 + b2
uc(t)f(t− c) e−scF (s)

sin bt
b

s2 + b2
δ(t− c) e−sc

cosh bt
s

s2 − b2
y′ sY − y(0)

sinh bt
b

s2 − b2
y′′ s2Y − sy(0)− y′(0)

tnf(t) (−1)n
dn

dxn
F (s) y(n) snY − sn−1y(0)

− · · · − y(n−1)(0)

Table 1. Laplace Transforms

12. Table of Laplace Transforms
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13. Solving DEs with Laplace Transforms

We essentially learn to do this by practice:

Examples 13.1.
A. Solve y′′ − y′ − 2y = 0 subject to y(0) = 1, y′(0) = 0.
B. Solve y′′ + 3y′ + 2y = e−3t subject to y(0) = 0, y′(0) = 1.
C. Arbitrary boundary conditions:

Solve y′′ − y = 0 subject to y(0) = A, y′(0) = B.

We next obtain some following additional formulas to use with more in-
teresting types of DE:

Proposition 13.2.
(a) L[uc(t)](s) exists for s > 0 and

L[uc(t)](s) =
e−sc

s
.

More generally,
(b) If F (s) exists, then so does L[uc(t)f(t− c)](s) and

L[uc(t)f(t− c)](s) = e−scF (s). Shifted function

f(x) = sin(πx/2)e−x
2/20 u2(x)f(x− 2)

The usefulness of these is seen in the following examples.

Examples 13.3. of multi-step functions in class, culminating in LT’s of the
following.

A. Square wave: q(t) = u(t)− u1(t) + u2(t)− · · ·
B. Sawtooth wave: s(t) = t− u1(t)− u2(t)− · · ·
C. Rectified sine wave: r(t) = sin t + 2uπ(t) sin(t − π) + 2u2π(t) sin(t −

2π) + · · ·
D. Triangular wave: g(t) = t− 2(t− 1)u1(t) + 2(t− 2)u2(t)− · · ·

Solving DE’s with Discontinuous and Periodic Forcing Functions

Examples 13.4. A. On-Off forcing in a circuit: y′′+y = 1−uπ(t); y(0) =
y′(0) = 0.
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B. On-Off forcing with damping: y′′+2y′+2y = 1−uπ(t); y(0) = y′(0) = 0.
C. Square Wave Forcing: y′′ + y = q(t); y(0) = y′(0) = 0.
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14. Review of Power Series

Definition 14.1. A power series about 0 is a series of the form
∞∑
k=0

ckx
k = c0 + c1x+ c2x

2 + · · ·+ ckx
k + . . . .

The ck are called the coefficients of the series.

Examples 14.2.
A. If all the coefficients ck = 1, then we have the geometric series 1 + x +

x2 + · · · =

∞∑
k=0

xk This series converges to 1
1−x for |x| < 1and diverges

otherwise.

B. ex = 1 + 1 · x+
1

2!
x2 +

1

3!
x3 + . . . =

∞∑
k=0

1

k!
xk has ck = 1

k!

C. cosx = 1− 1

2!
x2 +

1

4!
x4 − 1

6!
x6 + . . . =

∞∑
k=0

(−1)kx2k

(2k)!

D. sinx = x− 1

3!
x3 +

1

5!
x5 − 1

7!
x7 + . . . =

∞∑
k=0

(−1)kx2k+1

(2k + 1)!

Note that
∞∑
k=0

ckx
k =

∞∑
n=0

cnx
n =

∞∑
m=0

cmx
m,

so, in

∞∑
k=0

ckx
k, the index k is sometimes called a ”dummy index.”

Definition 14.3. A power series about the point a is a series of the
form

∞∑
k=0

ck(x− a)k = c0 + c1(x− a) + c2(x− a)2 + · · ·+ ck(x− a)k + . . . .

Example 14.4. If 0 < x < 2, then

lnx = (x−1)− 1

2
(x−1)2 +

1

3
(x−1)3− 1

4
(x−1)4 + · · · =

∞∑
k=1

(−1)k(x− 1)k

k

Convergence of power series

Examples 14.5. For which x do the following power series converge?

A.

∞∑
k=0

k2xk

B.
∞∑
k=0

(x− 3)k

k
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Theorem 14.6 (Theorem on Power Series).
Given any power series

∑∞
k=0 bk(x − a)k , there is an associated interval

of convergence centered at x = a such that the series converges for values
of x in that interval and diverges outside it. The interval can be any kind
of interval whatsoever, but is always centered at a. The half-width of this
interval is called the radius of convergence.

The proof of the theorem hinges on the following lemma:

Lemma 14.7. If

∞∑
k=0

bk(x− a)k converges for any x with |x− a| = r, then

it converges absolutely for every x with |x− a| < r.

To prove the lemma, use the fact that the terms in a convergent series
approach zero and therefore are eventually smaller than 1:

|bn||x− a|n < 1,

so that |bn| <
1

|x− a|n
.

This inequality allows you to prove quickly that the series converges for all
x with |x− a| < r.

Examples 14.8. Find the intervals of convergence and radius of conver-
gence of the following power series:

A.

∞∑
k=0

k2xk

B.
∞∑
k=0

xk

k!

C.
∞∑
k=0

(−1)k(x− 3)k

k

D.

∞∑
k=0

(x+ 3)k

k22k
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15. Series Solution Near an Ordinary Point

We are going to be solving a general second order linear DE of the form

(1) P (x)
d2y

dx2
+Q(x)

dy

dx
+R(x)y = 0

We shall assume that P (x), Q(x), and R(x) are analytic functions (func-
tions equal to their Taylor series near each point).

Definition 15.1. A point x0 with P (x0) 6= 0 is called an ordinary point
of equation (1). Otherwise, x0 is a singular point.

Note that P must remain non-zero in a small interval of an ordinary point,
and so we can divide by P (x) to get a DE of the form

(2)
d2y

dx2
+ p(x)

dy

dx
+ q(x)y = 0

Our job will be to seek a solution of (1) of the form

y(x) =
∞∑
n=0

am(x− x0)n = a0 + a1(x− x0) + · · ·+ an(x− x0)n + · · ·

Examples 15.2.

(A) Airy’s equation y′′ − xy = 0. Every point is an ordinary point. We
expand this one about x0 = 0.

(B) Airy’s equation about x0 = 1. First four terms only.

The following theorem guarantees the existence of nice series solutions
near an ordinary point:

Theorem 15.3. The DE (1) is guaranteed to have a series solution

y =
∞∑
n=0

am(x− x0)n = Ay1(x) +By2(x)

where y1(x) and y2(x) are linearly independent series solutions with radius
of convergence at least as large as the minimum radius of convergence of
p(x) = Q(x)/P (x) and q(x) = R(x)/P (x). �
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16. Series Solution Near Regular Singular Points

Definition 16.1. A regular singular point for the DE

P (x)
d2y

dx2
+Q(x)

dy

dx
+R(x)y = 0

is a singular point x0 such that:

lim
x→x0

(x− x0)
Q(x)

P (x)
and

lim
x→x0

(x− x0)2R(x)

P (x)

are both finite. In other words, when we divide by P (x), the singularity in
the coefficient of y′ is “no worse than” 1/(x−x0), while that of y is no worse
than 1/(x− x0)2. A singular point that is not regular is irregular.

Examples 16.2.

(A) 2x(x− 2)2y′′+ 3xy′+ (x− 2)y = 0 has a regular singular point at x = 0
and an irregular singular point at x = 2.

(B) (x − π/2)2y′′ + (cosx)y′ + (sinx)y = 0 has a regular singular point at
x = π/2. To see why, apply l’Hospital to the relevant limit.

(C) The Euler equation x2y′′ + αxy′ + βy = 0 has x = 0 as a regular
singular point. You found its general solution in the homework some
time back.

We now assume that our singular point happens to be x = 0. (If we have
a singular point at x0, then the substitution t = x − x0 will transform the
DE into one for with a singular point at 0. So, from now on, x0 = 0.

Trying to find a power series solution for a DE with singular points will
always lead to problems in determining the coefficients. Instead, we use a
solution of the form

y =
∞∑
n=0

anx
r+n

Example 16.3. Solve 2x2y′′ − xy′ + (1 + x)y = 0. When we equate the
coefficient of xr to zero we will find:

2r2 − 3r + 1 = 0

which is called the indicial equation. When there are two roots that do
not differ by an integer, we get two nice independent solutions.

When the roots of the indicial equation are equal of differ by an integer,
we have the following theorem:

Theorem 16.4. If a second order linear DE has x = 0 as a regular singular
point, and if r1 and r2 are the roots of the indicial equation, then:
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(1) If r1 = r2, a second solution is given by

y2(x) = y1(x) ln |x|+ |x|r1
∞∑
n=1

anx
n

in each of the intervals (−ρ, 0) and (0, ρ) for some ρ.
(2) If r1 − r2 = N, a positive integer, then

y2(x) = a1y1(x) ln |x|+ |x|r2
[

1 +
∞∑
n=1

anx
n

]
(3) If ri are complex of the form a± ib, then

y1(x) = |x|a cos(b ln |x|)

[
1 +

∞∑
n=1

anx
n

]

y2(x) = |x|a sin(b ln |x|)

[
1 +

∞∑
n=1

anx
n

]
�
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