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1. The Riemann Integral 
 
Definition 1.1 A partition of the closed interval [a, b] is a sequence 
 P = {x0 = a, x1, x2, . . . , xn = b} 
with xi-1 < xi for 1 ≤ i ≤ n,. Also define 
 ∆xi = xi - xi-1 (1 ≤ i ≤ n) 
The norm (mesh) of the partition P is defined as 
 |P| = ∆P = max{∆xi | 1 ≤ i ≤ n} 
 
Examples 1.2 

(a) {0, 12 , 1} is a partition of [0, 1]. 

(b) {1
2i  | 0 ≤ i ≤ n}Æ{0} is also a parition of [0, 1]. 

 
Definition 1.3 A partition Q of [a, b] is a refinement of the partition P of [a, b] if 
P ¯ Q. 
 
Examples 1.4 

(a) P = {0, 
1
2 , 1}; Q = {0, 

1
4 , 

1
2 , 

4
5 , 1} is a refinement of P. 

(b) if P and Q are any two partitions of [a, b], then the set PÆQ  (ordered as a sequence) 
is a refinement of both P and Q.  
 
Remarks 1.5 
(a) If a < b, then any partition P of [a, b] has a refinement. 
(b) If P is any partition of [a, b] and if œ > 0, then there exists a refinement Q of P with 
∆Q < œ. (Exercises) 
 
Recall that a function f: D→R is bounded if {f(x) | x é D} is a bounded set; that is, there 
exists M ≥ 0 with |f(x)| ≤ M for every x é D. 
 
Definitions 1.6 Let f: [a, b]→R be bounded and let P be a partition of [a, b]. The upper 
and lower Darboux sums of f are given by 

  U(f, P) = ∑
i=1

n

Mi ∆xi        L(f, P) = ∑
i=1

n

mi ∆xi    

           Upper Sum           Lower Sum 
where  
 Mi = sup{f(x) | x é [xi-1, xi]} and mi = inf{f(x) | x é [xi-1, xi]}. 
 
Remarks 1.7 
(a) L(f, P) ≤ U(f, P) for all partitions P (why?). 
(b) Definition 1.6 makes no sense if f is not bounded on [a, b] (why?). 
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Example Take f: [-1, 1]→R; f(x) = x2 and P = {-1, 0, 
1
2 , 1}. 

 

Proof  
(a) If Q = P, then the result is immediate. Thus, assume Q ≠ P. If Q is obtained from P 
by adding a single point y between xi-1 and xi, then, with mi = inf{f(x) | x é [xi-1, xi]},  
 L(f, P) = m1∆x1 + . . . + mi∆xi + . . . + mn∆xn  
  = m1∆x1 + . . . + mi(y-xi-1) + mi(xi-y)+ . . . + mn∆xn  
  ≤ m1∆x1 + . . . + ti(y-xi-1) + si(xi-y) + . . . + mn∆xn = L(f, Q), 
where si = inf{f(x) | x é [y, xi]} and ti = inf{f(x) | x é [xi-1, y]} (since A ¯ B  ⇒ inf B 
≤ inf A). If Q is obtained from P by adding m points, then repeat the above argument m 
times. A similar argument works for the upper sums. 
(b) Using (a) we get: 
  L(f, P) ≤ L(f, PÆQ) ≤ U(f, PÆQ) ≤ U(f, Q). ❖  
 
From now on, we continue to assume that f: [a, b]→R is a bounded function. 
 
Definition 1.9 Define the upper and lower integrals of f on [a, b] by 
 L(f) = sup{L(f, P) | P a partition of [a, b]} 
and 
 U(f) = inf{U(f, P) | P a partition of [a, b]}. 
 
In words, the lower integral is the sup of all the lower sums, and the upper integral is the 
inf of all the upper sums. 
 
Note It follows from Lemma 1.8(b) that L(f) ≤ U(f) (Exercise Set 1). Thus, if P and Q are 
any two partitions of [a, b], then 
 
  L(f, P) ≤ L(f) ≤ U(f) ≤ U(f, Q).   
 
Definition 1.10 The bounded function f: [a, b]→R is Riemann integrable if L(f) = U(f), 
and we then write 

 
⌡
⌠

a

 b 
f(x) 

 
dx  = L(f) = U(f). 

We sometimes write f é R[a, b], where R[a, b] is the set of all Riemann integrable 
functions f: [a, b]→R. 
 

Lemma 1.8   
Suppose f: [a, b]→R is bounded, and let P and Q be partitions of [a, b]. Then 
(a) If Q is a refinement of P, then L(f, Q) ≥ L(F, P) and U(f, Q) ≤ U(f, P) 
(b) L(f, P) ≤ U(f, Q). 
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Note If f is integrable on [a, b], then, ∀ partitions P, Q of [a, b],  
 

 L(f, P) ≤ 
⌡
⌠

a

 b 
f(x) 

 
dx   ≤ U(f, Q).    

 
Exercise Set 1 
1. Prove that, if P is any partition of [a, b] and if œ > 0, then there exists a refinement Q 
of P with ∆Q < œ. 
2. Prove that L(f) ≤ U(f) for any bounded function f: [a, b]→R. 
3. Show that f: [0, 1]→R given by  

 f(x) = 

  0 if x é Q
  1 if x � Q   

is not Riemann integrable. 
4. Show that constant functions are Riemann integrable. 
5. Prove that, if f and g are bounded functions on [a, b], then 
 L(f) + L(g) ≤ L(f+g) ≤ U(f+g) ≤ U(f) + U(g). 
Deduce that, if f and g are Riemann integrable, then so is f+g, and 

 
⌡
⌠

a

 b 
[f(x) + g(x)] 

 
dx  = 

⌡
⌠

a

 b 
f(x) 

 
dx  + 

⌡
⌠

a

 b 
g(x) 

 
dx . 

 
 
2. Integrable Functions 
where we are reassured by the fact that the functions we know and love (and even some 
we despise) are integrable. 
 

Proof  
�   If f is integrable, then U(f) = L(f) = I(f), say. In other words, I(f) = supP{L(f, P)} = 

infP{U(f, P)}. Thus, there exist partitions P1 and P2 of [a, b] such that 
 I(f) - œ/2 < L(f, P1) ≤ U(f, P2) < I(f) + œ/2. 
Using P = P1ÆP2, we get 
 I(f) - œ/2 < L(f, P1) ≤L(f, P) ≤ U(f, P) ≤ U(f, P2) < I(f) + œ/2, 
from which it follows that U(f, P) - L(f, P) < œ. 
�   Assume that for all œ > 0, there exists a partition P of [a, b] such that  

 U(f, P) - L(f, P) < œ. 
Then, since 
 L(f, P) ≤ L(f) ≤ U(f) ≤ U(f, P), 
we get U(f) - L(f) < œ for all œ, whence U(f) = L(f). ❖  

Lemma 2.1 (Technical Criterion for Integrability) 
f: [a, b]→R is integrable iff for all œ > 0, there exists a partition P of [a, b] such that 
 U(f, P) - L(f, P) < œ. 
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We now try to answer some questions such as “which functions are integrable?”  
 
The following is a most surprising result. 
 

Proof Assume wlog that f is increasing. First note that f is automatically bounded, since 
f(a) ≤ f(x) ≤ f(b) for all x é [a, b], so that the upper and lower integrals exist. Next notice 
that, if P is any partition of [a, b], then 
 U(f, P) - L(f, P) = £i Mi∆xi - £i mi∆xi 

 = £i (Mi-mi)∆xi 

 = £i (f(xi) - f(xi-1))∆xi  (since f↑) 
 ≤ £i (f(xi) - f(xi-1))∆P (recall that ∆P is the mesh of P) 
 = (f(b) - f(a))∆P. 
Let œ > 0. By the lemma, it suffices to find a partition P with U(f, P) - L(f, P) < œ.  
However, by the above inequality, any partition with mesh < œ/[f(b)-f(a)] will do. ❖  
 

Proof Since f is continuous on the closed interval [a, b], it is uniformly continuous there. 
Let œ > 0. Then there exists © > 0 such that |x - y| < © ⇒ |f(x) - f(y)| < œ/(b-a). If P is 
any partition with mesh < ©, then noting that, by the Extreme Value Theorem, f attains its 
bounds on each subinterval, we have 
 U(f, P) - L(f, P) = £i f(Ci)∆xi - £i f(ci)∆xi, (where f(ci) = mi and f(Ci) = Mi) 
         = £i [f(Ci) - f(ci)| ∆xi 

        < £i 
œ

b-a  ∆xi 

        =  
œ

b-a (b-a)  = œ. ❖ 

 
Definition 2.4 f: [a, b]→R is piecewise continuous if it is continuous at all but a finite 
number of points. 
 

Proof We do induction on the number d of points of discontinuity. If d = 0, then the 
result follows from Proposition 2.3. Thus, assume the result true for functions with ≤ d 
points of discontinuity, and assume that f has d+1 points of discontinuity. Let one of 
these points be c. Let œ > 0, and let M be an upper bound of |f(x))|.  
Case 1  c is an interior point of [a, b]. 
Choose partitions P1 of [a, c-œ/12M] and P2 of [c+œ/12M, b] such that  
 U(f, P1) - L(f, P1) < œ/3   and   U(f, P2) - L(f, P2) < œ/3. 
(Why can we do this?). Now let P = P1Æ{c}ÆP2. Then 

Theorem 2.2 (Monotone Functions) 
If f: [a, b]→R is monotone, then f is integrable. 

Proposition 2.3 (Continuous Functions)  
If f: [a, b]→R is continuous, then f is integrable. 

Theorem 2.5 (Piecewise Continuous Functions) 
If f: [a, b]→R is piecewise continuous, then f is integrable. 
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 U(f, P) - L(f, P) = U(f, P1) - L(f, P1) +  
œ

6M(2M)  + U(f, P2) - L(f, P2) 

       < 
œ
3  +  

œ
3  + 

œ
3  = œ.  

Case 2 c is an end point of [a, b].  
This is left as an exercise. ❖ 
 
Exercise Set 2 
1. For each of the following functions, find a partition P such that U(f, P)-L(f, P) < 0.1 

(a) f: [-1, 1]→’R; f(x) = |x|  (b) f: [-1, 1]→R; f(x) = 


 
1 if x ≥ 0
-1 if x < 0   

(c) f: [-π, π]→R; f(x) = sin x 
2. A Sequential Criterion for Integrability 
Prove that, if there exists a sequence (Pn) of partitions of [a, b] with the property that  
 U(f, Pn) - L(f, Pn) → 0 as n→Ï,  
then f é R[a, b] with  

 
⌡
⌠

a

 b 
 f(x) 

 
dx  =  lim 

n’Ï
 U(f, Pn) =  lim 

n’Ï
 L(f, Pn). 

3. Complete the proof of Theorem 2.5. 
4. Dirichlet's Function Revisited (yes!) Prove that the function f: [0, 1]→R given by 

 f(x) = 


 
1
q if x é Q and x = 

p
q in lowest terms

0 if x é R-Q
  

is Riemann integrable, with  
⌡
⌠

0

 1 
 f(x) 

 
dx  = 0. 

5.  Let (xn) be a sequence in [a, b] with xn→x as  n→Ï. Suppose that f: [a, b]→R is 
bounded and continuous except possibly at the points of (xn). Prove that f é R[a, b]. 
 
 
3. Some Technical Results 
in which we discuss “convenient” partitions, left sums, right sums, and the so-called 
“Riemann” sums that fill our baby calculus textbooks, and which will also lead to 
numerous useful consequences. 
 

Proof If [c, d] is the subinterval containing the point x of P'-P, then these differences are  
      U(f, P) - U(f, P') = (d-c)M - [(x-c)M1 + (d-x)M2] 

Lemma 3.1 (Adding a Single Point to a Partition) 
Let |f(x)| < K for all x é [a, b], and let P and P' be partitions of [a, b] such that P' is 
obtained from P by adding a singe point. Then 
 U(f, P) - U(f, P') < 2K∆x,    and    L(f, P') - L(f, P) < 2K∆x, 
where ∆x is the mesh of P. 
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 (where M, M1 and M2 are the supremum of f on the appropriate subinterval) 
   < (d-c)K + K[(x-c) + (d-x)]    (since |Mi| < K, so that -Mi ≤ K) 
   = 2(d-c)K ≤ 2∆xK. ❖ 
 

 

Proof First, since f é R[a, b], we can choose a partition Q of [a, b] with N subdivisions, 
say, such that  

 U(f, Q) - L(f, Q) < 
œ
3 . 

Since f is bounded, choose K with |f(x)| < K for all x é [a, b]. Now choose © = 
œ

6NK  .  

Let P be any partition such that ∆x < © = 
œ

6NK  . Then, with R = QÆP, certainly 

 U(f, R) - L(f, R) < 
œ
3   by Lemma 1.8(a) 

Now, R is obtained from P by adding at most N points. Thus, by the lemma,  

 U(f, P) - U(f, R) < 2NK∆x = 2NK 
œ

6NK   = 
œ
3  , 

and similarly for the lower sums. Thus, 
 U(f, P) - L(f, P) = U(f, P) - U(f, R) + U(f, R) - L(f, R) + L(f, R) - L(f, P) 

       < 
œ
3  + 

œ
3  + 

œ
3  = œ. 

The result now follows. ❖ 
 
Note This justifies the use of partitions with evenly spaced subintervals in Riemann 
sums, and we obtain the following very nice corollary. 
 

Corollary 3.2 Let |f(x)| < K for all x é [a, b], and let P and P' be partitions of [a, b] 
such that P' is obtained from P by adding n points. Then  
 U(f, P) - U(f, P') < 2nK∆x,    and    L(f, P') - L(f, P) < 2nK∆x, 
where ∆x is the mesh of P. 

Proposition 3.3 (Any Small Enough Partition is OK) 
If f: [a, b]→R is Riemann integrable, then , given any œ > 0, there exists ©>0 such that if 

P is any partition with ∆x < ©, one has 










U(f, P) - ⌡⌠

a

 b 
 f(x) dx   < œ, and similarly for the 

lower sum. 
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Proof 
(a) follows directly from the proposition by choosing N é N such that ∆(Pn) < © for n ≥ 
N. 
(b) follows from the inequalities 
 L(f, Pn) ≤ Left(f, Pn) ≤ U(f, Pn) and L(f, Pn) ≤ Right(f, Pn) ≤ U(f, Pn), 
and the sandwich rule. 
(c) follows from the inequality 
 L(f, P) ≤ R(f, P, {ci}) ≤ U(f, P), 

Corollary 3.4 (In Which Convergence of Numerical Calculations is Assured) 
Let f é R[a, b]. Then 
(a) If (Pn) is any sequence of partitions with ∆(Pn)→0 as n→Ï, then 

  lim 
n’Ï

  U(f, Pn) =  lim 
n’Ï

  L(f, Pn) =  
⌡
⌠

a

 b 
 f(x) 

 
dx . 

In particular, we can take Pn = {a, a+∆n, a+2∆n, . . . , a+n∆ n= b}, where  
∆n = (b-a)/n. 
 
(b) (Convergence of Left-and Right Sums)  
If P = {x0 = a, x1, x2, . . . , xn = b} is any partition of [a, b], define the left and right 
Riemann sum of f (associated with P) by 
 

  Left(f, P) = ∑
i=1

n

f(xi-1) ∆xi        Right(f, P) = ∑
i=1

n

f(xi) ∆xi   . 

           left sum               right sum 
 
Then, if (Pn) is any sequence of partitions with ∆(Pn)→0 as n→Ï, one has 

  lim 
n’Ï

  Left(f, Pn) =  lim 
n’Ï

  Right(f, Pn) =  ⌡⌠

a

 b 
 f(x) dx . 

 
(c) (Riemann Sum)  
If P = {x0 = a, x1, x2, . . . , xn = b} is any partition of [a, b], and if ci é [xi-1, xi] is an 
arbitrary point for each i, the associated Riemann sum of f is given by  

 R(f, P, {ci}) = ∑
i=1

n

f(ci) ∆xi  . 

Then, given any œ > 0, there exists ©>0 such that if P is any partition with ∆x < ©, one 

has 










R(f, P, {ci}) - ⌡⌠

a

 b 
 f(x) dx   < œ. In particular, if (Pn) is any sequence of partitions 

with ∆(Pn)→0 as n→Ï, one has, for arbitrary choices of the associated points {ci}n, 

   lim 
n’Ï

  R(f, Pn, {ci}n) =  ⌡⌠

a

 b 
 f(x) dx . 
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so that  

 










R(f, P, {ci}) - ⌡⌠

a

 b 
 f(x) dx   ≤ 











U(f, P) - ⌡⌠

a

 b 
 f(x) dx  , 

giving the result. ❖  
  
Exercise Set 3 
1. The Trapezoid sum associated with a partition P = {x0 = a, x1, x2, . . . , xn = b} is 
given by 

 T(f, P) =  
1
2 ∑

i=1

n

( )f(xi) + f(xi-1)  ∆xi  . 

Use a sketch to explain why it is called a “trapezoid sum,” and show that, if f é R[a, b], 
and if (Pn) is any sequence of partitions with ∆(Pn)→0 as n→Ï, one has 

   lim 
n’Ï

  T(f, Pn) =  ⌡⌠

a

 b 
 f(x) dx . 

2. (Riemann Sum Criterion for Integrability) Let f be bounded on [a, b]. Prove that f é 

R[a, b] with integral I =  
⌡
⌠

a

 b 
 f(x) 

 
dx . iff given any œ > 0, there exists ©>0 such that if P 

is any partition with ∆P < ©, one has  
 | |R(f, P, {ci}) - I   < œ  
for all choices of ci é [xi-1, xi].(Note that we have already proved one direction.) 
3. Suppose that f is continuous on [a, b] and differentiable on (a, b). Use the Mean Value 
Theorem to prove that, if P is any partition of [a, b], then there exist ci é [xi-1, xi] such 
that 
  
 R(f', P, {ci}) = f(b) - f(a). 
 
Deduce that if F is continuous on [a, b] and differentiable on (a, b), with F' = f, 

  ⌡⌠

a

 b 
 f(x) dx  = F(b) - F(a). 

(In other words: if F is any antiderivative of f on [a, b], then the integral is given by the 
above formula.) 
4. Let [a, b] be an interval, and let Pn = {xi} be the partition mentioned in Corollary 

3.4(a) , namely xi = a + 
i(b-1)

n  . Give an example of a bounded function f: [a, b]→R 

with such that the left- and right sums associated with the partition Pn converge to the 
same number and yet f is not integable. Justify your assertions. 
 
❖❖ Extra Credit ❖❖ 
 A subset A ¯ R has measure zero if, ∀œ>0, there exist a countable collection {(an, bn)} 
of open intervals with A ¯ Æn(an, bn) and £n(bn - an) ≤ œ for all n.  Prove that the 
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bounded function f: [a, b]→R is Riemann integrable if the set of discontinuities of f in [a, 
b] has measure zero. (In fact, the converse is also true: f: [a, b]→R is Riemann integrable 
iff the set of discontinuities of f in [a, b] has measure zero.) 
 
4. Properties of the Integral  
which were listed for you in your previous calculus classes, but never justified. 
 

Proof  
(a) We use the criterion in Exercise Set 3 # 2. Thus, let œ > 0. Then since f and g are 
integrable, there exist ©1 and ©2 such that, for all partitions P1 and P2 of [a, b] with ∆Pi < 
©i (i = 1, 2) and for all choices of {xi}, one has 

  










R(f, P1, {xi}) -⌡⌠

a

 b 
 f(x) dx    < 

œ
2(|c|+1)   and 











R(g, P2, {xi}) -⌡⌠

a

 b 
 g(x) dx   < 

œ
2(|d|+1)  . 

Now  let © = min{©1, ©2}, and let P be any partition with ∆P < © . Then 

     










R(cf+dg, P, {yi}) - 










c⌡⌠

a

 b 
 f(x) dx + d⌡⌠

a

 b 
 g(x) dx   

 =†  










R(cf, P, {yi}) + R(dg, P, {yi}) - 










c⌡⌠

a

 b 
 f(x) dx + d⌡⌠

a

 b 
 g(x) dx   

 

 =  










c










R(f, P, {yi}) - ⌡⌠

a

 b 
 f(x) dx  + d











R(g, P, {yi})  - ⌡⌠

a

 b 
 g(x) dx   

                                                
† That's what is nice about using Riemann sums instead of infs and sups here. 

Theorem 4.1 (Properties of the Integral)  
(a) Linearity  Let f and g é R[a, b], and c, d é R. Then cf + dg é R[a, b] and 

  
⌡
⌠

a

 b 
 (cf + dg) 

 
x) dx =  c

⌡
⌠

a

 b 
 f(x) 

 
dx  + d

⌡
⌠

a

 b 
 g(x) 

 
dx . 

(b) Preservation of Order If f, g é R[a, b], with f(x) ≤ g(x) ∀x é [a, b], then  

 
⌡
⌠

a

 b 
 f(x) 

 
dx  ≤ 

⌡
⌠

a

 b 
 g(x) 

 
dx . 

(c) Partitioning of the Range of Integration Let a < c < b. Then f is integrable on 
[a, b] iff it is integrable on [a, c] and [c, b]. When this happens, we have  

 
⌡
⌠

a

 b 
 f(x) 

 
dx = 

⌡
⌠

a

 c 
 f(x) 

 
dx + 

⌡
⌠

c

 b 
 f(x) 

 
dx . 
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 ≤  |c| 










R(f, P, {yi}) - ⌡⌠

a

 b 
 f(x) dx   + |d|











R(g, P, {yi})  - ⌡⌠

a

 b 
 g(x) dx   

 < œ, by choice of ©. 

This shows not only that cf + dg is integrable, but also that its integral is  c⌡⌠
a

 b 
 f(x) dx  + 

d⌡⌠

a

 b 
 g(x) dx , as claimed.  

(b) Since order is preserved by suprema and infima, it is also preserved by passage to 
Darboux sums, and hence to Riemann integrals. 
(c)  Assume f é R[a, b]. We show that f is integrable of [a, c] and [c, b], using the 
criterion in Lemma 2.1. Thus, let œ > 0. Since f is integrable on [a, b], there exists a 
partition P of [a, b] such that  
 U(f, P) - L(f, P) < œ. 
We can assume wlog that c é P. (If not, throw it in without effecting the inequality—
why?) Then, we can write P = QÆR, where Q is a partition of [a, c] and R is a partition 
of [a, b]. We have 
 U(f, Q) - L(f, Q) ≤ U(f, Q) - L(f, Q) + U(f, R) - L(f, R)  
        = U(f, P) - L(f, P) < œ, 
showing that f is integrable on [a, c]. Similarly, it is integrable of [c, b]. 
 Conversely, if f is integrable of [a, c] and [c, b], then we shall use the criterion in 
Exercise Set 3 # 2 to show that it is integrable on [a, b], with the integral as stated. Thus, 
let œ > 0. Since f is integrable on [a, c] and [c, b], there exist, there exist ©1 and ©2 such 
that, for all partitions P1 of [a, c] and P2 of [c, b] with ∆Pi < ©i (i = 1, 2) and for all 
choices of {xi}, one has 

  










R(f, P1, {ri}) -⌡⌠

a

 c 
 f(x) dx   < 

œ
3  and 











R(f, P2, {si}) -⌡⌠

c

 b 
 f(x) dx   < 

œ
3  

for all choices of {r.i} and {si}. Now  let © = min{©1, ©2, œ/(6M)}, where M is an upper 
bound of |f| on [a, b], and let P be any partition  of [a, b] with ∆P < ©, and let {zi} be 
points with zi é [xi-1, xi], as usual. 
Case 1* c é P.  
In this case, P breaks up as two partitions P1 of [a, c] and P2 of [c, b] with ∆Pi < © ≤ ∂i 
for each i. Thus, 

     










R(f, P, {zi}) - 










⌡⌠

a

 c 
 f(x) dx + ⌡⌠

c

 b 
 f(x) dx   

 =  










R(f, P1, {zi}) + R(f, P2, {zi})- 










⌡⌠

a

 c 
 f(x) dx + ⌡⌠

c

 b 
 f(x) dx   

                                                
* This seems to be the only case that Kosmala considers. He (conveniently) neglects the harder case. (The 
sum of his two Reimann sums is not necessarily the Riemann sum of the union of his two partitions if c is 
not already a partition point.)  
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 ≤ 










R(f, P1, {zi}) - ⌡⌠

a

 c 
 f(x) dx   + 











R(f, P2, {zi})+ ⌡⌠

c

 b 
 f(x) dx   

 < 
œ
3  + 

œ
3  < œ. 

Case 2. c ∉ P. 
Here, let Q = PÆ{c}, so that ∆Q < © as well. Assume c é [xi-1, xi], and let P1 = {x0, . . 
. , xi-1}—a partition of [a, xi-1], and let P2 = {xi, . . . , xn}—a partition of [xi, b]. Then 
define a Riemann sum R associated with Q of f over [a, b] as follows. 
 B = R(f, P1, {zi}) + R(f, P2, {zi}) + (c-xi-1)f(c) + (xi-c)f(c) 
 = R(f, P1, {zi}) + R(f, P2, {zi}) + (xi-xi-1)f(c) 
Then 
 |R(f, P, {zi}) - B| = (xi-xi-1)|f(c) - f(zi)| ≤ 2©M < œ/3,  
by choice of ©. Further, 

     










R(f, P, {zi}) - 










⌡⌠

a

 c 
 f(x) dx + ⌡⌠

c

 b 
 f(x) dx   

 =  










R(f, P, {zi}) - B + B - 










⌡⌠

a

 c 
 f(x) dx + ⌡⌠

c

 b 
 f(x) dx   

 ≤ |R(f, P, {zi}) - B| +  










B - 










⌡⌠

a

 c 
 f(x) dx + ⌡⌠

c

 b 
 f(x) dx   

 =  |R(f, P, {zi}) - B|   
   + 











R(f, P1, {zi}) + (c-xi-1)f(c) + R(f, P2, {zi}) + (xi-c)f(c) - 










⌡⌠

a

 c 
 f(x) dx + ⌡⌠

c

 b 
 f(x) dx   

 ≤ |R(f, P, {zi}) - B|    

  + 










R(f, P1, {zi}) + (c-xi-1)f(c)- ⌡⌠

a

 c 
 f(x) dx   

   + 










R(f, P2, {zi})+ (xi - c)f(c) - ⌡⌠

c

 b 
 f(x) dx   

 < 
œ
3  + 

œ
3   + 

œ
3  = œ, 

since the last two terms are Riemann sums for f over [a, c] and [c, b] respectively. 
(Whew!)   ❖ 
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Proof  We do the case g ≥ 0, leaving the other case to the exercises. Define H: [a, b]→R 
by  

 H(x) = f(x)⌡⌠

a

 b 
 g(x) dx . 

Then H, being a multiple of f, is continuous. If m and M are, respectively, a lower and 
upper bound of f, then m ≤ f(x) ≤ M for all x, so that, since g(x) ≥ 0,  
 mg(x) ≤ f(x)g(x) ≤ Mg(x) 
for all x. Since f in continuous on [a, b], there exist r, s é [a, b] with f(r) = m and f(s) = 
M. Thus, 
 f(r)g(x) ≤ f(x)g(x) ≤ f(s)g(x). 
Integrating, 4.1(b) gives 

 f(r) ⌡⌠

a

 b 
 g(x) dx  ≤ ⌡⌠

a

 b 
 f(x)g(x) dx  ≤ f(s) ⌡⌠

a

 b 
 g(x) dx  

That is, 

 H(r) ≤ ⌡⌠

a

 b 
 f(x)g(x) dx  ≤ H(s). 

By the Intermediate Value Theorem applied to H, there exists c é [a, b] with 

 H(c) = ⌡⌠

a

 b 
 f(x)g(x) dx ,  

and this is the result. ❖ 
 
With g(x) = 1, Theorem 4.2 reduces to 
 

 
Exercise Set 4  
1. Show that, if f and g are integrable on [a, b], then so are max{f, g} and min{f, g}. 
(Hint: if [x, y] is any interval, then min{inf(f), inf(g)} ≤ min{f, g} ≤ min{sup(f) , 
sup(g)}.) 
2. (a) Let f é R[a, b]. Prove that |f| é R[a, b], and  
                                                
†† Actually, we need only specify that f and g are integrable. The extra-credit problem would imply that fg 
is integrable, since the union of two sets with measure zero still has measure zero. 

Theorem 4.2 (Integral Mean Value Theorem) 
Let f, g and fg é R[a, b] with f continuous and either g ≥ 0 or g ≤ 0.†† Then there exists 
c é [a, b] with 

 ⌡⌠

a

 b 
 f(x)g(x) dx  = f(c)⌡⌠

a

 b 
 g(x) dx . 

Corollary 4.3 (Traditional IMVT) 
Let f be continuous on [a, b], then there exists c é [a, b] with  

  ⌡⌠

a

 b 
 f(x)dx  = f(c)·(b-a). 
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









⌡⌠

a

 b 
 f(x) dx   ≤  ⌡⌠

a

 b 
 | |f(x)  dx . 

(b) Give an example of f with |f| integrable, but not f. 
3. Suppose that f and g are Riemann integrable on [a, b] such that f(x) = g(x) for all x 
except for finitely many values. Show that  

  
⌡
⌠

a

 b 
 f(x) 

 
dx  =  

⌡
⌠

a

 b 
 g(x) 

 
dx . 

4. (a) Show by means of an example that the assumption that “g ≥ 0 or g ≤ 0” is 
necessary in Theorem 4.2.  

 (b) Show by means of an example that the assumption that f is continuous is 
necessary in Theorem 4.2.  

 (c) Show that Theorem 4.2 continues to hold if g ≤ 0. 
 
 
5. The Fundamental Theorem of Calculus & Other 
Results, 
which we have already previewed in Exercise Set 3, number 3, and where, displeased by 
the odd approach in Wade, we take the liberty of deviating somewhat. 
 
Definition 5.1 If f: [a, b]→R is any function, then a primitive, or antiderivative, of f is 
a function F: [a, b]→R, such that F is continuous on [a, b] and such that F'(x) exists and 
equals f(x) at all but at most a finite number of points in (a, b). 
 
Note In the homework, you will prove that the primitive is unique up to a constant. 
  

Proof  
(a) Let M be such that |f(x)| ≤ M for all x é [a, b]. Then, for x ≤ y in [a, b], one has 

Theorem 5.2 (Fundamental Theorem of Calculus) 
Let f é R[a, b], and define F: [a, b]→R by 

 F(x) =  ⌡⌠
a

 x 
 f(t) dt . 

Then: 
(a) F is continuous on [a, b]. 
(b) If f is continuous at x é (a, b), then F is differentiable at x, with F'(x) = f(x). (It 

follows that, if f is continuous at all but a finite number of points, then F is a primitive 
of f.) 

(c) If f is any integrable function (no assumptions about continuity here) and G is any 
primitive of f, then  

  
⌡
⌠

a

 b 
 f(x) 

 
dx  = G(b) - G(a). 
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 |F(y) - F(x)| = 










⌡⌠

x

 y 
 f(t) dt   ≤  ⌡⌠

x

 y 
 |f(t)| dt  ≤  ⌡⌠

x

 y 
 M dt  = M|y-x|, 

showing that F is Lipschitz, and hence (uniformly) continuous, on [a, b]. 
(b) Let œ > 0. If f is continuous at x é (a, b), then ∃ ©>0 such that 0 < |t-x| < © ⇒ 
|f(t) - f(x)| < œ.  Now, if |h| < ©, then 

      



F(x+h) - F(x)

h   - f(x)   = 








1

h  ⌡⌠

x

 x+h 
 f(t) dt - f(x)   

          = 








1

h  ⌡⌠

x

 x+h 
 (f(t) - f(x)) dt   

     ≤ 
1
h  ⌡⌠

x

 x+h 
 |f(t) - f(x)| dt   (this assumes h > 0)* 

     < 1h   ⌡
⌠

x

 x+h

 œ dt     (since h < ©) 

     = œ. 
(c) Let G be a primitive of f, so that G'(x) exists and equals f(x) for all except finitely 
many points in (a, b). Then, since f is integrable, there is a partition P = {x0, . . . , xn} of 
[a, b] that contains all those questionable points, and is such that, for all choices of zi é 
[xi-1, xi], one has  

 










R(f, P, {zi}) -  ⌡⌠
a

 b 
 f(x) dx   < œ  . . . (1) 

Since G is continuous on each [xi-1, xi] and differentiable on each (xi-1, xi), we can 
apply the MVT to obtain points ci é (xi-1, xi) with 
 G'(ci)∆xi = G(xi) - G(xi-1). 
But G'(ci) = f(ci), so that 
 f(ci)∆xi = G(xi) - G(xi-1). 
Summing,  
 R(f, P, {ci}) = G(b) - G(a).  
Thus, by (1), 

 










G(b) - G(a) -  ⌡⌠
a

 b 
 f(x) dx   < œ. 

Since œ is arbitrary, we obtain ⌡⌠

a

 b 
 f(x) dx  = G(b) - G(a), as required. ❖   

 
Examples 5.3 
A. Let us find a primitive for f: [0, π]→R; f(x) = sin x. 

B. Now consider the unit step function u(x) = 


 
0 if x < 0
1 if x ≥ 0  . 

                                                
* We get the same result two steps later if h < 0. 
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C. f: [-1, 1]→R;  f(x) = 


 
x2 if x ≥ 0
x3 if x < 0   

D. f: (0, +Ï)→R; f(x) = 1/x. 
 

Proof Define H: [a, b]→R by H(u) = ⌡⌠

a

 u 
 f(t) dt . Then F(x) = H(g(x)) = Hõg(x). Since g 

is differentiable at x and H is also differentiable at g(x) (since f is continuous there, and so 
its integral is differentiable there, by the theorem), we can use the chain rule to get 
 F'(x) = H'(g(x))g'(x) = f(g(x))g'(x), 
as required. ❖ 
 

Example 5.6 Evaluate ddx ⌡
⌠

a

 x2+1

 sin t 
 
dt  . 

 

Proof Let F: [a, b]→R be a primitive of f. Then F is differentiable everywhere (since f is 
continuous everywhere). By the chain rule, (Fõg)'(x) exists and equals F'(g(x))g'(x) = 
f(g(x))g'(x). In other words, (Fõg) is a primitive of the integrand on the right. So, 

 ⌡⌠

a

 b 
 f(u) du  = F(b) - F(a) = Fõg(d) - Fõg(c) = ⌡⌠

c

 d 
 f(g(x))g'(x) dx , 

as required. ❖  
 
Example 

Use substitution to evaluate ⌡
⌠

 0

 1 

 
x

(x2+1)2 dx . 

Corollary 5.4 (Fancy Fundamental Theorem) 
Let g: [c, d]→[a, b] be differentiable at x and let f: [a, b]→R be integrable over [a, b] 
and continuous at g(x). Then, with  

 F(x) = 
⌡
⌠

a

 g(x) 
 f(t) 

 
dt ,  

F is differentiable at x, and 
 F'(x) = f(g(x))g'(x). 

Theorem 5.7 (Change-of-Variables; Substitution) 
Let g: [c, d]→[a, b] be continuous on [c, d] and differentiable on (c, d). Let f: [a, b]→R 
be continuous . Then 

 
⌡
⌠

a

 b 
 f(u) 

 
du  = 

⌡
⌠

c

 d 
 f(g(x))g'(x) 

 
dx , 

provided the integral on the right exists. 
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Exercise Set 5 
1. Find primitives for each of the following functions: 
(a) f: [-1, 1]→R; f(x) = |x|  
(b) f: [0, n]→R; f(x) = [x] (the “floor” function)  

(c) f: [-1, 1]→R; ©œ(x) = 



 
0 if x < -œ
1 if -œ ≤ x ≤ œ
0 if x ≥ œ

 where © is a fixed positive number. 

2. Uniqueness of the Primitive up to a Constant Use the Fundamental Theorem of 
Calculus to prove that any two primitives of f differ by a constant. That is, if F and G are 
primitives of f, then there exists a constant C such that F(x) = G(x) + C. (In particular, F 
and G are differentiable at the same points.) 
3. The error function, erf: R→R, is defined by the formula 

 erf (x) = 
2
π ⌡
⌠

 0 

x

e
-t2

  dt  . 

(Just believe in the existence of the exponential function for now—we'll prove it in the 
next section!) Use fundamental theorem of calculus to evaluate each of the following. 

 (a) ddx 
 

π
2  erf (x)    (b)  ⌡

⌠
e
-x2

  dx   (c) ddx [ ]erf (x2 - 1)    

4. Integration by parts Study Wade's Theorem 5.31 (Integrtion by Parts), and use it to 
do p. 131 #1(d), (e) 
5. Evaluate: 

 (a) ddx ⌡
⌠

1

x

2+t3 
 
dt   (b) ddx ⌡

⌠

x2

x3

t sin t  
 
dt  

 
 
6. The Logarithmic and Exponential Functions, 
which Wade scatters through the exercises and which,up to this point in time, have never 
existed except in the fantasies of certain high-school teachers who, eager for results at the 
expense of understanding, have urged their students to accept, on blind faith, the 
existence of functions that were never defined and yet endowed with remarkable 
properties. 
 
Definition 6.1 Define the natural logarithm function ln: (0, +Ï)→R by  

 ln(x) = ⌡
⌠

1

 x 

 
1
t dt . 
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Proof (a), (b) in class. For (c), we use the fact that 1/t2 < 1/t < 1 for t > 1, and the 
reverse is true if t < 1, thus negating the change in signs. For (d), we use the fact that the 
natural derivative is positive to show the increasing part. We then do (e) in class, and the 
rest is in the homework. ❖  
 
Note For further properties, see the exercise set. 
 

Proof (a) By general properties of inverses, (f-1)'(x) = 1/f'(f-1(x)), so 

 d
dx(exp(x))  = 

1
1/exp(x)  = exp(x). 

Rest in class. ❖  
 
Note For further properties, see the exercise set. In particular: 
 ln(xr) = rln x for all r é Q. 
 
Definition 6.3 The base of the natural logarithm, e, is given by the formula 
 e = exp(1). 
 

Proposition 6.1 (Properties of the Natural Logarithm Function) 
The function ln: (0, +Ï)→R has the following properties: 

 (a) The natural logarithm is differentiable on (0, +Ï) with ddx(ln x)  = 
1
x   

 (b) ln 1 = 0 
 

 (c) For all x > 0, 1- 
1
x ≤ ln x ≤ x-1  (with equality only when x = 1) . 

 (d) The natural logarithm is strictly increasing and bijective.  
 (e) ln xy = ln x + ln y 

 (f) ln


1

x   = - ln x for all x > 0 

 (g) ln


x

y   = ln x - ln y for all x, y > 0 

Corollary 6.2 (Existence of the Exponential Function) 
Since the natural logarithm function is strictly increasing and bijective, it has a 
differentiable strictly increasing inverse,  
 exp: R→(0, +Ï) 
with the following properties: 

 (a) ddx(exp(x))  = exp(x) 

 (b) exp(0) = 1 
 (c) exp(x+y) = exp(x) ¿ exp(y) 
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Proof (a) ln(e) = ln(exp(1)) = 1. 
(b) ln(er) = rln(e) = r, by Exercise 1 and part (a) above. Taking exp of both sides gives 
the result. 

(c) Let an = 





1 + 
1
n

 n
 . Consider the sequence (ln(an)). One has  

 ln(an) = n ln(1+1/n) = 
ln





1 + 
1
n




1

n

  = 
ln





1 + 
1
n  - ln(1)




1

n

  → ln'(1) = 1 

as n→Ï. Hence,  
 an = exp(ln(an)) → exp(1) = e  as n→Ï. 
Finally, to show that the sequence is increasing, let 

 f: (0, +Ï)→R be given by f(x) = 
ln(1+x)

x   . Then f'(x) = 
1
x2 





1 - 
1

x+1 - ln(1+x)  

. It suffices to show that the quantity in parentheses is always negative (for positive x). 
But this is Proposition 6.1(c) (with x replaced by x+1).  
(d)-(f) are homework. ❖ 
 
Notes 
1. Part (f) says, with x replaced by e, that er = exp(rlne) = exp(r) for all r é Q. This 
suggests that exp(r) should be er for all r é R, but we do not yet have a definition of the 
letter! 
2. Similarly, it says that xr = exp(r lnx)  for all r é Q, and thus suggests that they should 
be the same for all r, although, again, we don't have a definition of xr.  
Thus, we do the following. 
 
Definition 6.5 
(a) If x é R, then define ex = exp(x)  .  

(b) If x é R and a > 0, then define ax = exp(x ln a) = exln a  . 
 
By the above notes, these definitions agree with the usual definitions for rational 
exponents, and since exp is continuous (in fact, it is infinitely differentiable), we get, if 

Proposition 6.4 (Some properties of e) 
 (a) ln(e) = 1 
 (b) If r é Q, then er = exp(r) 

 (c) e =  lim 
n’Ï

 


1 + 
1
n

 n
 , and the sequence in question is strictly increasing. 

 (d) exp(-x) = 
1

exp(x)  for all x é R 

 (e) exp(x-y) = 
exp(x)
exp(y)  for all x, y é R 

 (f) exp(r lnx) = xr for all x > 0 and r é Q. 
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(rn) is a sequence of rational numbers converging to the real number x, then arn→ax as 
n→Ï, as we would like. Further, all the usual rules for exponents are satisfied. 
 
Exercise Set 6 
1. Prove each of the following identities: 

 (a) ln


1

x   = - ln x for all x > 0 

 (b) ln


x

y   = ln x - ln y for all x, y > 0 

 (c) ln(xr) = rln x for all r é R. 
2. Complete the proof of Proposition 6.2 by showing that ln: (0, +Ï)→R is surjective. 
3. Prove each of the following identities: 
 (a) exp(-x) = 1/exp(x) for all x é R 
 (b) exp(x-y) = exp(x)/exp(y) for all x, y é R 
 (c) exp(r lnx) = xr for all x > 0 and r é Q. 

4. (a) Prove that  e-1 =  lim 
n’Ï

 


1 - 
1
n

 n
  and that the sequence in question is strictly 

increasing. 
(b) Use part (a) together with Proposition 6.4(c) to prove that 2.7 < e < 2.8.  
5. (a) By considering Riemann sums or otherwise, prove that, if n é N*, then  

 
1
2  + 

1
3  + ... + 

1
n  < ln n < 1 + 

1
2  + 

1
3  + ... + 

1
n–1 . 

(b) Show that 





1 + 
1
2  + 

1
3  + ... + 

1
n - ln n   is a  positive monotone decreasing sequence, 

and deduce from part (a) that  lim 
n∅Ï

 





1 + 
1
2  + 

1
3  + ... + 

1
n - ln n   < 1.†  

6. Prove that, if a > 0, then the function f: R→ (0, +Ï) given by f(x) = ax is 
differentiable and invertible. Writing its inverse as loga: (0, +Ï)→R, show that the 
logarithm satisfies properties (b), (e), (f) and (g) of Proposition 6.1. What is its 
derivative? 
7. (Do not hand in) Now that you know what arbitrary powers of a real number are, 

complete the proof of the power rule: ddx(x
a)  = axa-1, where a é R. 

 
7. Improper Integrals 
where we deal with functions that are unbounded, or with intervals of integration that are 
unbounded. First, the latter. 
 
Definition 7.1 Let f: [a, +Ï)→R be bounded be integrable on every closed interval 
[a, M]. Then we define 

                                                
† The limit of this seqauence is denoted by ç ‡ 0.57721566, and is called either Euler's constant or 
Mascheroni's constant in honor of Lorenzo Mascheroni (1750-1800) It is not known whethere ç is rational 
or not.  
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⌡
⌠

 a

 Ï 
 f(x) 

 
dx  =  lim 

M’+Ï ⌡
⌠

 a

 M 
 f(x) 

 
dx  , 

if the limit exists (and is finite), and say that the improper integral È Ïa f(x) dx converges.  
Otherwise, we say it diverges (if the limit does not exist at all) or diverges to ±Ï  if that 
is what the limit does. 
 
Note If f: (-Ï, b]→R is bounded and integrable on every interval of the form [-M, b], 
then we make a similar definition of È b-Ï f(x) dx. 
 
Examples 7.2 

A.  If a > 0, then ⌡
⌠

 a

 Ï 

 
1
x2 dx  converges. B.  If a > 0, then ⌡

⌠

 a

 Ï 

 
1
x dx  diverges. 

C. In general,  if a > 0, then ⌡
⌠

 a

 Ï 

 
1
xp dx  converges iff p > 1. 

D. A. ⌡
⌠

 0 

Ï

xe
-x2

  dx  converges. 

Proof of Comparison Test Let F:  [a, +Ï)→R be given by F(M) = È 
Ï

K  f(x) dx, and 
similarly for G. one has, by preservation of order, 
 0 ≤ F(M) ≤ G(M), 
where F and G are increasing functions. If È Ïa  f(x) dx diverges, then F is unbounded 

above, and hence diverges to +Ï, whence so does G. If È Ïa  g(x) dx converges, then G is 
bounded above, whence so if F, showing that F has a limit as M→+Ï.  
Proof of Absolute Convergence Test Just write f = f+ - f-, so that |f| = f++f-. Since 
0 ≤ f+ ≤ |f| and 0 ≤ f- ≤ |f|, we see that  È Ïa  f+(x) dx and  È Ïa  f-(x) dx converge by the 

Theorem 7.3 (Tests for Convergence of Improper Integrals) 
Comparison Test 
If f and g are integrable on [a, M] for every M > a, and suppose there exists K ≥ a such 
that  0 ≤ f(x) ≤ g(x) for x ≥ K. Then 
(a) if È Ïa  f(x) dx diverges, so does È Ïa  g(x) dx; 

(b) if È Ïa  g(x) dx converges, then so does È Ïa  f(x) dx. 
Absolute Convergence Test 
If f is integrable on [a, M] for every M > a, and if  È Ïa  |f(x)| dx converges, then so does 

 È Ïa  f(x) dx, and | | È Ïa f(x) dx   ≤  È Ïa  |f(x)| dx. 
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Comparison Test, whence so does their difference, f = f+-f-. The remaining inequality 
follows by preservation of order when we take the limit as M→+Ï. ❖   
 
Examples 7.4  

 A. ⌡
⌠

 0 

Ï

e
-x2

  dx  converges.   

B. If |f(t)| ≤ Keat for some constants K, a, then its Laplace transform, F(s) = 

⌡⌠

 0 

Ï

f(t)e-st dt  exists for s > a 

 
Definition 7.5 Suppose f: [a, b)→R is unbounded, but is bounded on every interval [a, c] 
with c < b. Then define 

 ⌡⌠

 a 

b

f(x) dx  =  lim 
c’b-

 ⌡⌠

 a 

c

f(x) dx  , 

assuming the limit exists. If it does, we say the improper integral converges. (See 
Definition 7.1 for the rest of the terminology.) We make a similar definition for 
unbounded functions (a, b]→R.  
 
Examples 

A. ⌡⌠
 0 

1

x-p dx  for various p.     B. ⌡⌠
 7 

8

(8-x)-2/3 dx  

 
Note Theorem 8.3 continues to hold for these types of improper integrals also. 
 
Definition 7.6 An integral È ba  f(x) dx (with a and/or b possibly infinite) is improper if 

there exist finitely many points a = c1 < c2 <. . . < cn = b such that È ci+1

ci  f(x) dx is an 

improper integral of one of the above types. The improper integral  È 
b

a  f(x) dx 

converges if each of the integrals Ji = È ci+1

ci  f(x) dx converges, and diverges to +Ï  if 
each of the Ji either converges, or diverges to +Ï (similarly for divergence to -Ï). 
Otherwise, it just plain diverges.  
 
Examples in class. 
 
Exercise Set 7 
1. Wade, p. 139 #2 
2. Wade, p. 139 #4. 
3. Give an example of an integrable function f: R→R with È Ïa  f(x) dx convergent, but 
f(x)∅/   0 as x→+Ï. (Hint: You may need to define this function piecewise with infinitely 
many pieces.) 
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4. The Gamma Function  We define the gamma function, ¶: (0, +Ï)→R by 

 ¶(x) =  
⌡
⌠

 0

 Ï 
 tx-1e-t 

 
dt . 

(a) Prove that the integral converges. (Note that it is improper both at 0 (if x < 1) and at 
+Ï.)  
(b) Prove that ¶ enjoys the following properties:  
(i) For all x > 0, ¶(x+1) = x¶(x). 
(ii) For all n é N with n ≥ 1, ¶(n) = (n-1)! 
5 Prove: 
(a) ¶( )1

2   = π . 

(b) ¶ 
2n+1

2   = 
(2n)! π

4nn!    

(c) For x < 0, x é Z, we define ¶ inductively as follows. Assume ¶ has already been 
defined on (-n, -n+1)Æ. . . Æ(-1, 0)Æ(0, +Ï). We then extend the definition to (-n-
1, -n)Æ(-n, -n+1)Æ. . . Æ(-1, 0)Æ(0, +Ï) by defining  

 ¶(x) = 
¶(x+1)

x    

for x é (-n-1, -n). Sketch the graph of ¶. 
 
 
8. Infinite Series 

Definitions 8.1 Let (an)n≥1 be a sequence. Then the infinite series ∑
 k=1 

Ï

ak  is just the 

expression a1 + a2 + . . . + ak + . . . . The ak are called the terms of the series, and ak is 
the kth term of the series. The associated sequence of partial sums is the sequence (Sn) 

where Sn = a1 + a2 + . . . + an = ∑
 k=1 

n

ak . We say that the series ∑
 k=1 

Ï

ak  converges to S  if 

the associated sequence of partial sums converges to S, and we write 

 ∑
 k=1 

Ï

ak   =  lim 
n’Ï

 Sn. 

Similarly, we say that the infinite sum diverges to ±Ï  if the associated sequence of 
partial sums diverges to ±Ï.  
 

Thus, if an’/  0 as n→Ï, the series £Ï
k=1 ak diverges, and so this is called the divergence 

test. 

Proposition 8.2 (Divergence Test) 

If ∑
 k=1 

Ï

ak  converges, then an→0 as n→Ï. 



 24 

Proof The fact that the sequence of partial sums is Cauchy implies that, for all œ>0 there 
exists N such that n ≥ N implies |Sn-Sn-1| < œ. In other words, |an| < œ, showing that 
an→0 as n→Ï. ❖ 
 
Note The converse is false: that is, if an→0, then it does not necessarily imply that £Ï

k=1 
ak converges. (See Example 8.3(C) below). All this says is that if an’/  0 as n→Ï, then 
the series £Ï

k=1 ak has no hope of converging. If an→0 as n→Ï, then the series does have 
a hope of converging, but might still diverge. 
 
Examples 8.3 
A. The series £Ï

k=1 k/(k+1) diverges. 

B. Geometric Series ∑
 k=0 

Ï

ark  Here, Sn = a + ar + . . . + arn = 
a(1-rn+1)

1-r   converges 

iff |r| < 1, in which case it converges to a
1-r . 

C. Harmonic Series ∑
 k=1 

Ï

 
1
k  diverges 

D. Telescoping Series, such as  ∑
 k=1 

Ï

 
1

k(k+1) . 

E. Alternating harmonic series ∑
 k=1 

Ï

 
(-1)k+1

k    has Sk ≤ 1 and S2k increasing -- picture for 

now (better proof later) 
 
 

Proof in class. 
 
Exercise Set 8 
1. Discuss convergence of the following series. 

(a) ∑
k=1

 Ï
 
2k+1

32k   (b) ∑
k=1

 Ï
 

1
k2+3k+2  (c) ∑

k=1

 Ï
 

1
4k2+1  (d) ∑

k=1

 Ï
 ( k+1 - k ) 

(e) ∑
k=1

 Ï
 ln 

k
k+1  (f) ∑

k=1

 Ï
 k sin 

1
k  (g) ∑

k=1

 Ï
 ln 

1
k  

 

Proposition 8.4 (Cauchy Criterion) 
The series £Ï

k=1 ak converges iff, given any œ > 0, there exists N é N such that  

 m, n ≥ N ⇒  








∑
k=m

n

ak   < œ. 
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2. Prove of give a counterexample with regard to each of the following claims. 
(a) If both £an and £bn diverge, then so does £(an + bn). 
(b) If both £an and £bn converge, then so does £(an + bn). 
(c) If £an converges and £bn diverges, then £(an + bn) diverges. 
(d) If both £an and £bn converge, then so does £(anbn). 

3. Use the Cauchy criterion to show that  ∑
 k=1 

Ï

 
1
k2  converges. 

4. (Decimal Representation of the Real Numbers)  
(a) Prove that, if (n1, n2, . . . , nk, . . .) is any sequence of integers with 0 ≤ ni ≤ 9 for all 
i, then the infinite series 

  ∑
n=1 

Ï

 
nk

10k  = 0.n1n2. . . nk. . .  

converges.  
(b) Prove that every real number in (0, 1) can be expressed in the form 0.n1n2. . . nk. . . 
.(Hint: Construct a certain increasing sequence Sn→ x with 0 ≤ x-Sn < 10-n) 
 
9. Series with (Eventually) Positive Terms 
 
Here, we consider only series of the form £Ï

k=1 ak with  ak ≥ 0 for all k, and give a few 
little tests for convergence. More generally, we also allow series whose terms are 
eventually positive, that is, ak ≥ 0 for k ≥ some n. In what follows, bear in mind that we 
can use an eventually positive series as well, but will simply refer to a series with 
positive terms.  
 

Proof The reason for this is that the sequence of partial sums is monotone increasing, and 
so the result follows from Part I of these notes, which says that a monotone increasing 
sequence either converges or diverges to +Ï. ❖ 
 

Proof Again the result follows by looking at the partial sums. ❖  
 
Examples 9.3 

Proposition 9.1 (Series with Positive Terms) 
If £ak is a series with positive terms, then it either converges, or diverges to +Ï. 

Theorem 9.2 (Comparison Test for Series with Positive Terms) 
If £ak and £bk are series, and if there exists M  ≥ 0 with 0 ≤ ak ≤ Mbk for all k ≥ some 
n, then: 
 (a) £bk convergent ⇒£ak convergent. 
 (b) £ak divergent ⇒£bk divergent  
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 A.   ∑
 

   
5

3k-2+1   B.   ∑
 

   
5

1+ k
   C.   ∑

 

   
5n

n!   D.   

∑
 

   



k+10

3k
 k

     

Proof This follows at once from the inequality 

 Sk+1 - a1 ≤ ⌡
⌠

 1 

k+1

 f(x) 
 
dx  ≤ Sk 

by taking limits. ❖ 
 
Notes 
1. We can replace 1 in the above theorem with any integer n everywhere it occurs. 
2. The integral and the series may not converge to the same value. 
 

Proof We settle the case p ≤ 0 using the divergence test, and the case p > 0 follows from 
the integral test. ❖ 
 
More Examples 9.5 

 A. ∑
 k=2 

Ï

 
1

k ln k     B. ∑
 k=10 

Ï

 
1

k ln k ln(ln k)  ,  etc. 

 
Definition 9.6 If £ak is an series, then a rearrangement of £ak is a series of the form 
£a˙(k), where ˙: N*→N* is a bijection.  
 
Examples  
In class. 
 

Theorem 9.3 (Integral Test) 

If f: [1, +Ï)→R is any decreasing function with ak = f(k) for all k ≥ 1, then  ∑
 k=1 

Ï
  ak 

converges iff ⌡⌠
 1 

Ï

 f(x) dx  converges. 

Corollary 9.4 (p  Series) 

The series ∑
 k=1 

Ï

 
1
kp  converges iff p > 1. 

Theorem 9.6 (Rearrangement of a Series with Positive Terms) 
If £a˙(k) is any rearrangement of £ak, then £ak converges iff £a˙(k) converges, in which 
case they converge to the same sum. 
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Proof Call the two series in question £ak and £bk, so that bk = a˙(k), and ak = b 
˙-1(k)

 , 
and call the corresponding partial sums Sn and Tn respectively. Then, for all n, 
 0 ≤ Tn ≤ Smax{˙(1), ˙(2), . . . , ˙(n)}  
(write out what Tn is, and notice that the term on the right includes all the summands of 
Tn. This is where we use the fact that the series has positive terms.) Writing max{˙(1), 
˙(2), . . . , ˙(n)} as ∞(n), we get 
 0 ≤ Tn ≤ S∞(n). 
Similarly, for all m, 
 0 ≤ Sm ≤ T§(m), 
where §(m) = max{˙-1(1), . . . , ˙-1(m)}. Putting them together yields 
 0 ≤ Tn ≤ S∞(n) ≤  T§(∞(n)). 
Since both ∞(n) and §(n)→+Ï as n→Ï, we can take limits and get the result. ❖ 
 
Exercise Set 9 
1. Test for convergence:  

(a) ∑
k=2

 Ï
 

1
ln k  (b) ∑

k=2

 Ï
 

1
k ln k   (c) ∑

k=2

 Ï
 

1
[ln k]2  (d) ∑

k=2

 Ï
 

1
[ln k]k  (e) ∑

k=1

 Ï
 

1
k1+1/k  (f) ∑

k=e2

 Ï
 

1
k ln k ln(ln k)  

2. (a) Give an example to show that Theorem 9.6 (on rearrangements) does not work if 
the series includes infinitely many negative terms. 
(b) If a series has finitely many negative terms, does Theorem 11.6 work? Give a proof or 
counterexample. 
3. (a) Prove the following. 

(b) Use the limit comparison test to discuss convergence of the following series: 

 (i) ∑
 k=1 

Ï

 
2 k

3k2 - 2k + k
   (ii)  ∑

 k=1 

Ï

 
k2

k!  

[Hint for (ii): The “obvious” candidate won't work, so try something not quite so small.] 
 
 
10. More Tests for Series with Positive Terms, 
in which we look at ratio and root tests. 
 

Theorem 9X3 (Limit Comparison Test) 

Let £ak and £bk be two series with positive terms with   lim 
k’Ï

 
ak

bk
  finite. Then: 

 (a) £bk convergent ⇒ £ak convergent. 
Thus, (b) £ak divergent ⇒ £bk divergent. 
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Proof The given inequality implies that  

 
ak+1

bk+1
  ≤ 

ak

bk
   

for k ≥ n, implying that the sequence (ak/bk) is eventually monotone decreasing and 
positive, whence convergent. The conclusion now follows from the Limit Comparison 
Test. ❖ 
 
Example 10.2 
Use the test to prove that £1/k! converges, given that £1/k2 converges. 
 
Note As the proof shows, this is just the Limit Comparison Test in disguise, but harder to 
verify, since we need the ratio ak/bk to decrease to a limit rather than just to converge as 
required in the Limit Comparison Test. In other words, 
 

The Ratio Comparison Test is Useless: 
The Limit Comparison Test is more powerful than the Ratio 
Comparison Test. That is, if the Ratio Comparison Test works, 
then so does the Limit Comparison Test (and it works with the 
same series in the test). In yet other words, the Ratio Comparison 
Test gives us nothing new, so don't bother to use it. What we need 
it for is other stuff. 

 
Still, we can use it to prove a more interesting test that doesn't require comparison with 
another series: 
 

                                                
† named after Jeán Le Rond d’Alembert (1717-1783) 

Theorem 10.1 (Ratio Comparison Test) 
S'pose that £ak and £bk are series with positive terms such that ∃n > 0 such that 

 
ak+1

ak
  ≤ 

bk+1

bk
  

for all k ≥ n. Then  
 (a) £bk convergent ⇒ £ak convergent. 
Thus, (b) £ak divergent ⇒ £bk divergent. 

Theorem 10.3 (d’Alembert's Ratio Test)†  
S'pose that £ak is a series with positive terms. Then: 
(a) If there exists n > 0  and å < 1 with  

 
ak+1

ak
  ≤ å 

for all k ≥ n, then £ak converges. 
(b) If there exists n > 0  with 

 
ak+1

ak
  > 1 

for all k ≥ n, then £ak diverges. 
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Proof For (a), apply the Ratio Comparison Test using the geometric series £åk. For (b), 
use, as £ak the series £1k = £1, and as £bk the given series £ak. ❖  
 

 
Note If the sequence of ratios ak+1/ak fails to converge, then the Cauchy test is useless, 
but d'Alembert's test may still work. 
 
One More Test 

Proof in the exercises 
 

 
Examples 10.7 
A. Any geometric Series  B. (an) = (1/2, 1/3, 1/22, 1/32, . . .) 
 
We see that Example B above fails d’Alembert's test but passes the fancy root test. 
 
Notes 
1. The fancy root test is stronger than d’Alembert's ratio test: if the ratio test works, then 
so does the root test. (Proof in the exercises) Thus, if the ratio test fails, there may still be 
a chance that the root test works. However, the root test may be harder to use. (Just try 
taking the kth root of k factorial.) 
 
Exercise Set 10 
1. Discuss convergence of the following series:  

Corollary 10.4 (Cauchy's Ratio Test) (which you learned in Calc II) 

S'pose that £ak is a series with positive terms, and that  lim 
k’Ï

ak+1

ak
  exists and equals å. 

Then if å < 1, the series £ak converges, and if å > 1, the series £ak diverges. 

Theorem 10.5 (Fancy Root Test) 
S'pose that £ak is a series with positive terms. Then: 
(a) If there exists n > 0  and å < 1 with  

 
k
ak  ≤ å 

for all k ≥ n, then £ak converges. 
(b) If there exists n > 0  with 

 
k
ak  > 1 

for all k ≥ n, then £ak diverges. 

Corollary 10.6 (Limit Root Test) (which you also learned in Calc II) 

S'pose that £ak is a series with positive terms, and that  lim 
k’Ï

k
ak   exists and equals å. 

Then if å < 1, the series £ak converges, and if å > 1, the series £ak diverges. 
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(a) ∑
k=1

 Ï
 
k2

2k  (b) ∑
k=2

 Ï
 
k!
kk   (c) ∑

k=2

 Ï
 (

k k -1)k  

2.* Discuss the convergence of ∑
k=1

 Ï
 

kk

ek k!  and ∑
k=1

 Ï
 
ek k!
 kk

 . [Hint: Neither the ratio test nor the 

root test will work here. What will get you started is this: take the natural log of the terms, 
see what you get, and use a Riemann sum to compare the messy part with an integral…] 
3. Illustrate the necessity of the strict inequality å < 1 in d’Alembert's Ratio Test by 
giving two series; one convergent, one divergent, which satisfy the hypothesis of part (a) 
of the theorem, except that å = 1. 
4. Prove the Root test. 
5. (a) Prove that if £ak satisfies hypothesis (a) of d’Alembert's ratio test, it also satisfies 
the corresponding hypothesis of the fancy root test. (Hence, if the ratio test shows 
convergence, so does the root test.)  
(b) Give two divergent series: one that satisfies hypothesis (b) of d’Alembert's ratio test 
but not hypothesis (b) of the fancy root test, and vice-versa. 
 
 
11. Absolute and Conditional Convergence, 
where we look at series that are not eventually positive. 
 
Definition 11.1 An (eventually) alternating series is a series of the form £(-1)kak or 
£(-1)k+1ak, where (ak) is an (eventually) positive sequence. 
 
Examples 11.2 

A. The alternating harmonic series,   ∑
 k=1 

Ï

 
(-1)k

k  . 

B.   ∑
 k=1 

Ï

  sin 



(2n+1)π

2    C. Any geometric series with negative r. 

 
The following theorem shows that it is easy to tell when an alternating series converges. 
First, some notation. 
 
Notation If (an) is a sequence, we write an➘0 as n→Ï if (an) is eventually decreasing, 
and an→0 as n→Ï. 
 

Proof Let us do the proof for £(-1)kak. We shall prove convergence of the sequence of 
partial sums (Sn). To do this, look at the subsequence of even terms, (S2n). We can write 
                                                
* This problem was given as an extra credit problem to a Math 20 class of mine some time in the past, and 
had all the students running running around the Math department in a frenzy.  

Theorem 11.3 (Leibniz' Alternating Series Test) 
If (an) is a sequence with an➘0 as n→Ï, then £(-1)kak and £(-1)k+1ak converge. 
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 S2(n+1) = S2n  - a2n+1 + a2n+2 ≤ S2n, 
since (an) is decreasing. Thus (S2n) is a decreasing sequence. On the other hand,  for all n, 
 S2n = S1 + a2 - a3 + a4 - a5 + . . . + a2n-2 - a2n-1 + a2n 
      ≥ S1 + (a2 - a2) + (a4 - a4) + . . . + (a2n-2 - a2n-2) + a2n 
      = S1 + a2n ≥ S1. 
Thus, since the sequence of even terms is decreasing and bounded below (by S1), it 
converges to S, say. Finally, since for all n one has 
 |S2n+1 - S| ≤ |S2n+1 - S2n| + |S2n - S|  
       = a2n+1 + |S2n - S|→0 as n→Ï,  
it also follows that the odd terms also converge to S. ❖ 
 
Examples 11.4 

 A. Alternating harmonic series 1 – 
1
2  + 

1
3  – 

1
5  + . . . = ln 2   

 B. 
sin (nπ/2)

ln n   
 
Definition 11.5 The series £ak is absolutely convergent if the series £|ak| converges. If 
£ak converges, but £|ak| diverges, then the series is conditionally convergent.  
 
Examples 11.6 

A.  ∑
 k=1 

Ï

 
(-1)k

k2   is absolutely convergent. B.  ∑
 k=1 

Ï

 
(-1)k

k   is conditionally convergent. 

 

Proof (a) Let £ak be absolutely convergent, with partial sums Sn, and let Tn be the partial 
sums of £|ak|. Let œ > 0. Then, since £|ak| converges, there exists N such that n ≥ m ≥ N 
implies |Tn - Tm| < œ. But 
 |Sn - Sm| = |am+1 + an+2 + . . . + an| 
      ≤ |am+1| + |an+2| + . . . + |an| = |Tn - Tm| < œ, 
showing that £ak also converges.  
(b) and (c) follow by the comparison test. ❖  
 
Now, we look at rearrangements. 
 

Proposition 11.7 (Absolute Convergence Implies Convergence) 
Let £ak be absolutely convergent. Then: 
(a) £ak is convergent 
(b) £max{ak, 0} is convergent 
(c) £min{ak, 0} is convergent 

Theorem 11.8 (Rearrangement of an Absolutely Convergent Series) 
If £a˙(k) is any rearrangement of the absolutely convergent series £ak, then £a˙(k) 
converges absolutely, and to the same sum as £ak. 
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Proof† Call the two series in question £ak and £bk, so that bk = a˙(k) (and ak = b˙-1(k)) 
for some permutation ˙: N*→N*. First, we show that the series £bn converges 
absolutely by the Cauchy criterion. Thus, let œ > 0 and choose N such that  
 m ≥ n ≥ N ⇒ |an| + . . . + |am| < œ  ...  (1) 
Now, {a1, a2, ..., aN} = {b˙-1(1), b˙-1(2), ..., b˙-1(N)}. So, if we choose M to be the largest 
index of the set on the right, then p ≥ M implies bp = ar for some r ≥ N. Thus, if  
p ≥ q ≥ M, then  
 |bq| + . . . + |bp| = |a˙(p)| + . . . + |a˙(q)|, 
where each ˙(p) ≥ N. But all the indices on the righ-hand side are at least N, so the right-
hand side is < œ by (1), showing that the series £bn is absolutely convergent. 
 Let the corresponding partial sums of the series £ak and £bk be Sn and Tn 
respectively. Define a subsequence (Tnk

) of (Tn) by requiring that Tnk
 be the sum of all 

the terms in Sk and then some. (There are lots of possible choices for this subsequence. 
All we require is that nk be at least as big as the largest of ˙-1(1), ..., ˙-1(k).)  In symbols, 
 Tnk

 = Sk + terms ar with r > k. 
Thus, for every k, 
 |Tnk

 - Sk| is the absolute value of a sum of terms ar with r > k ... (2) 
We now claim that the subsequence (Tnk

) converges to S = lim Sn (whence, since the 
original sequence (Tn) also converges—we showed above that £bn is (absolutely) 
convergent—it too must converge to S, completing the proof of the theorem). Indeed, let 
œ > 0. Since £ak converges absolutely, there exists N such that  
 m ≥ k ≥ N ⇒ |ak| + . . . + |am| < œ/2 and also |Sk - S| < œ/2.  
But then, for k ≥ N, one has 
 |Tnk

 - S| ≤ |Tnk
 - Sk| + |Sk - S| 

      ≤ œ/2 + œ/2  
by (2) and the choice of N, showing that (Tnk

) converges to S. ❖ 
 
On the other hand,  

Proof For each n, let ak
+ = max{ak, 0} and an

- = min{ak, 0}.  
Claim 1 We assert that £ak

+ diverges to +Ï and £ak
- diverges to  -Ï.  

Indeed, if £ak
+ converged, then , noting that  

 ak = ak
+ + ak

-, 
we see that two of the three corresponding series converge, whence so does the third. 
(See the exercises.) Thus, £ak

- must also converge. But now 
 |ak| = ak

+ - ak
-, 

                                                
† Kosmala doesn't seem to bother with this proof or even the easier one about series with positive terms. Is 
he scared? 

Theorem 11.9  (Rearrangement of a Conditionally Convergent Series) 
If £ak is a conditionally convergent series, and if s is either an arbitrary real number or 
±Ï, there exists a rearrangement £a˙(k) of £ak with infinite sum s. 
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and now the series corresponding to both terms on the right converge, whence so does 
£|an|, contradicting the fact that £ak is conditionally convergent. Thus £ak must diverge, 
and hence must diverge to +Ï, by the result on series with positive terms. Mutatis 
mutandis, it follows that £ak

- also diverges to -Ï.  
Claim 2 There is a rearrangement converging to any finite number s. 
Assume, without loss of generality, that s ≥ 0. Let n(1) be the least integer such that  
 a1

+ + a2
+ + . . . + an(1)

+ > s, 
and let m(1) be the least integer such that  
 a1

+ + a2
+ + . . . + an(1)

+ + a1
- + a2

- + . . . + anm1)
- < s. 

(Such integers exist by Claim 1.)Then choose n(2) to be the least integer such that  
 a1

+ + a2
+ + . . . + an(1)

+  
  + a1

- + a2
- + . . . + anm1)

-  
   + an(1)+1

+ + an(1)+2
+ + . . . + an(2)

+ > s. 
Notice that |s - this sum| ≤ an(2) by choice of n(2). Continuing in this vein and leaving 
out all zero terms of the form ak+ and ak

- (where the corresponding original terms were 
not zero), we are obtaining a rearrangement  that converges to s.  
Clam 3 There are rearrangements that diverge to ±Ï.  
Proof in the exercise set. ❖ 
 
Exercise Set 11 
1. Determine whether the following series converge absolutely, conditionally, or neither. 
Give the reasons. 

(a) ∑
k=1

 Ï
 

k2

(-2)k  (b) ∑
k=2

 Ï
 (-1)k



3k+2

4k2-3    (c) ∑
k=2

 Ï
 (-1)k

arctan k
k2   (d) ∑

k=2

 Ï
 

k!
(-k)k  

2. Prove in three lines or less that, if an = bn + cn, and if two of the three corresponding 
series converge, so does the third.  
3. Prove Claim 3 in the proof of Theorem 11.8: There are rearrangements of any 
conditionally convergent series that diverge to ±Ï. 
 
 
12. Sequences of Functions: Pointwise Convergence and 
Uniform Convergence 
 
Definition 12.1 Let (fn) be a sequence of functions  fn:D→R. Then we say that  fn→f 
pointwise if, for all x é D, the sequence (fn(x)) converges to f(x). 
 
Examples 12.2 
 A. fn: (-1, 1]→R; fn(x) = xn (pictures of graphs in class) 

 B. fn: R→R; fn(x) = 1 + x + 
x2

2!   + . . . + 
xn

n!  

 C. fn: R→R; fn(x) = xn  
 D. fn: R→R; fn(x) = un(x) - un+1(x), where, for c é R,  
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  uc(x) = 


 
0 if x < c
1 if x ≥ c  . 

 E. (An unintuitive example)  fn: R→R; fn(x) = n[un(x) - u2n(x)] 
 
Question Is the limit of the integral equal to the integral of the limit? 
Answer Not on your life! Let  fx: [0, 1]→R; fn(x) = (n+1)xn. Then the integral is 1 for 
each n, whereas the limit is zero. Also look at ⌡⌠

0
+Ïfn(x) dx in Examples D and E above, 

where the functions also approach zero, but not the integrals. Clearly then, we need a 
better behaved (or more intuitive) form of convergence. Here is one. 
 
Definition 12.3 Let (fn) be a sequence of functions  fn:D→R. Then we say that  fn→f 
uniformly if, for all œ > 0, there exists N é N such that  
 n ≥ N ⇒ |fn(x) - f(x)| < œ 
for all x é D. (See figure.) 

x

y

f

f + ε

f – ε
fn

 
 
Note Uniform convergence implies pointwise convergence (Exercise Set 14) but the 
converse need not hold (see below). 
 

❖ 
 
Examples 12.5  
A. fn: [0, 1]→R; fn(x) = x/n converges uniformly to 0, since |x/n| ≤ 1/n for all x in the 
domain, so we simply choose N = 1/œ.  
B. Examples 12.2 (D) and (E) are not uniformly convergent. 
C. Example 12.2 (B) is not uniformly convergent, since ex→+Ï, whereas the odd sums 
go off to -Ï. (Even the even sums behave badly: look at the difference |ex - fn(x)| and let 
x→ +Ï.) 
 

Proposition 12.4 (Sequential Criterion—Oh Yes There Is One!—For Uniform 
Convergence) 
The sequence (fn: D→R) converges uniformly iff the sequence  
 rn = sup{|fn(x) - f(x)| : x é D}  
exists for large enough n and → 0 as n→Ï. 
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Question What about Example 12.2(A) and (C)? 
Answer We can dispense with (A) and (C) once we show the following: 
 

Proof Let œ > 0, and let a é D. We show continuity at a. First, choose n such that  
 |fn(x) - f(x)| < œ/3   (1) 
for every x é D. Then, choose © such that x é D and |x-a| < © implies 
 |fn(x) - fn(a)| < œ/3   (2). 
Then,  x é D and |x-a| < © implies 
 |f(x) - f(a)| = |f(x) - fn(x) + fn(x) - fn(a) + fn(a) - f(a)| 
        ≤ |f(x) - fn(x)| + |fn(x) - fn(a)| + f|n(a) - f(a)| 
        < œ/3 + œ/3 + œ/3 = œ. ❖ 
 
This, plus other results, gives: 

Proving the (fn)  does not converge uniformly to f  
Either: 
 1. Show that each fn is continuous, but not f 
 2. Prove that sup{|fn(x) - f(x)| : x é D} either does not 
 exist for infinitely many n, or does not approach 0 as n→Ï. 

 
Examples 12.6  
A. By the proposition (method 1 in the box) we can immediately rule out Examples 14.2 
(A) and (C).  
B. Does fn: [0, +Ï)→R; fn(x) = x2e-nx converge uniformly ? [Answer: Yes. Hint: locate 
the absolute maximum of this function and use it together with the sequential condition.] 

C. fn: [0, +Ï)→R; fn(x) = 
nx

1+n2x2   [Answer: no. To see why, draw their graphs by 

plotting maximum points. Then invoke Method 2.] 
 
Some more things preserved by uniform convergence: 

Proof*  By the sequential criterion, 
 Mn = sup{|fn(x) - f(x)| : x é D}  
exists for sufficiently large n and →0 as n→Ï. Now, for such n, 
 0 ≤ |fn(x) - f(x)| ≤ Mn. 
Further, since every function in sight is continuous and hence integrable, one has 
                                                
* See Kosmala, p. 387 for a less intersting proof. 

Proposition 12.5 (Uniform Limit of a Continuous Function) 
If (fn: D→R) is a sequence of continuous functions with uniform limit f, then f is also 
continuous 

Proposition 12.7 (Integral of a Limit) 
If (fn: [a, b]→R) is a sequence of continuous functions with uniform limit f, then f is 
integrable on [a, b], and  

  lim 
n’Ï

 ⌡⌠

a

 b 
 fn(x) dx  exists and equals ⌡⌠

a

 b 
 f(x) dx . 
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0 ≤  










⌡⌠

a

 b 
fn(x) dx - ⌡⌠

a

 b 
f(x) dx   = 











⌡⌠

a

 b 
fn(x) - f(x) dx   ≤ ⌡⌠

a

 b 
|fn(x) - f(x)| dx   

       ≤ ⌡⌠

a

 b 
Mn dx  = Mn(b-a)→0 as n→Ï, 

from which the result follows by the sandwich rule. ❖ 
 
Note If we replace the requirement of continuity of the fn by integrability, we still 
survive, since we can have: 
 0 ≤ |U(fn, P) - U(f, P)| ≤ |U(fn-f, P)| ≤ |U(Mn, P)| → 0 
and 
 0 ≤ |L(fn, P) - L(f, P)| ≤ |L(fn-f, P)| ≤ |U(Mn, P)| → 0, 
and hence so do the suprema taken over partitions P. But since  

 U(fn) = L(fn) = ⌡⌠

a

 b 
fn(x) dx , 

we must have U(f) = L(f), and everything works. (You will be asked to polish this proof 
up in the exercises.) 
 
Finally, we have 

Proof is an extra credit exercise.†  
 
Exercise Set 12 
1. Discuss unform convergence of the following functions: 

(a) fn: [–π, π]→R; fn(x) = 
sin(nx)

n   

(b) fn: [0, +Ï)→R; fn(x) = 
xn

1+x2n 

(c) fn: [0, 1]→R; fn(x) = 
xn

n    

(d) fn: [0, 2]→R; fn(x) = 
xn

2n  

 
(e) fn: [0, π]→R; fn(x) = sinn(x) 

                                                
† There is a proof in Wade, and if you can make head or tail of his argument (or decipher his bizarre 
notation), good luck to you. Alternatively, here is an easier plan of attack: By considering the functions gn 

= f - fn, observe that it suffices to prove the following special case: If (gn: [a,b}→R) is a decreasing 
sequence of continuous functions that converges pointwise to zero, then gn→0 uniformly. To prove the 
latter, it suffeices in turn to show that yn = max {gn(x) | x é [a, b]} → 0 as n→Ï. That is where the work 
is... 

Theorem 12.8 (U. Dini, circa 1935) 
Let  fn: [a, b]→R and s'pose that  fn ^f pointwise as n→Ï. S'pose in addition that the fn 
and f are continuous. Then fn→f uniformly. 
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2. Discuss uniform convergence of fn: (-1, 1)→R given by fn(x) = 
1-xn

1-x   . 
3. Prove that uniform convergence implies pointwise convergence.  
4. Give examples of the following, justifying your claims. 
(a) A sequence of discontinuous functions on [0, 1] that converges uniformly to a 

continuous function. 
(b) A sequence of discontinuous functions on [0, 1] that converges uniformly to a 

discontinuous function. 
(c) A sequence of continuous functions on [0, 1] that converges non-uniformly to a 

continuous function. 
5. Polish up the note following Proposition 12.7. 
 
Extra Credit Prove Dini's theorem. 
 
 
13. Series of Functions 
 
Recall that a series is nothing more than a sequence (of partial sums). But we will be 
somewhat interested in functions defined as limits of series (such as power series), and 
we desire to know some properties of these functions. 
 
Definition 13.1 If (fn) is a sequence of functions, then the associated infinite series  
£ Ï

k=1 fk is just the sequence of partial sums (sn =  £ n
k=1 fk). Thus, we can use the usual 

definitions to talk of pointwise convergence, and uniform convergence. 
 
Note All the results and tests above still work here; for example, if the fk are continuous, 
£ Ï

k=1 fk converges uniformly, then its limit must be continuous. 
 
Examples 13.1 
A. fn: (-1, 1)→R, fn(x) = xn has £ Ï

k=0 fk converging pointwise, but not uniformly, to 
1/(1-x). (See the previous exercise set and/or use the sequential criterion.) 
B. The same example as in (A), but with (-1, 1) replaced by any closed subinterval. (Use 
the sequential criterion again.) 

C. fn[0, 1]→R; fn(x) = 
x

(x+1)n-1  has a discontinuous infinite sum (it is x times a 

geometric series away from 0). 
 
 We have the following theoretical result. 
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Proof Exercise Set 13. ❖  
 
Definition 13.3 The series £ Ï

k=1 fk converges pointwise (resp. uniformly) absolutely if 

the series £ Ï
k=1 |fk| converges pointwise (resp. uniformly). Absolute uniform convergence 

is also known as normal convergence, or convergence in the sup norm.  
 

Proof Cauchy criterion. ❖  
 
Examples 

 A. fn(x) = 
sin(4x-n)

n2    B.  fn: (0, +Ï)→R; fn(x) = 
sin(nx)
xn2.1   

     (note that |sin(nx)/x| is bounded.) 
The following result follows from the analogous result on convergence of sequences of 
functions. 
 

 

Proof in the Exercises 
 

Proposition 13.2 (Cauchy Criterion for Uniform Convergence) 
£ Ï

k=1 fk converges uniformly iff, for every œ>0 there exists N é N such that n, m ≥ N 

implies | |£ n
k=mfk(x)   < œ. 

Theorem 13.3 (Weierstrass M-Test) 
S'pose (fn: D→R) is a sequence of functions, and (Mn) is a sequence of real numbers with 
|fn(x)| ≤ Mn for all n ≥ some k. If the series £Mn converges, then £ Ï

k=1 fk converges 
uniformly absolutely. 

Proposition 13.4 (Term-by-Term Integration) 
If £fk is a series of integrable functions that converges uniformly to f, then f is integrable, 
and 

 ∑
k=1

Ï

  ⌡⌠
a

 b 
 fk(x) dx  exists and equals ⌡⌠

a

 b 
 f(x) dx .  

In other words, 

  ⌡⌠

a

 b 
 ∑
k=1

Ï

   fk(x) dx  = ∑
k=1

Ï

 ⌡⌠
a

 b 
 fk(x) dx . 

Proposition  13.5 (Term-by-Term Differentiation) 
If £fk is a series of differentiable functions that converges pointwise to f, and assume also 
that £fk'(x) converges uniformly. Then f is differentiable, and 

 ∑
k=1

Ï

  
d
dx [ ] fk(x)   = 

d
dx 




∑

k=1

Ï

  fk(x) dx  . 
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Exercise Set 13 
1. Analyze the following series for uniform and pointwise convergence [Hint: to chow 
that a given series does not converge, it sometimes helps to see if you can obtain the 
partial sums and refer to the method used in §12.]:  

(a) ∑
k=1

 Ï
 
x2

k2 ; x é [0, 1]     (b) ∑
k=1

 Ï
 

1
xk+1 ; x é (1, +Ï) 

(c) ∑
k=1

 Ï
 e-kx; x é R     (d) ∑

k=1

 Ï
 e-kx; x é (0, +Ï) 

(e) ∑
k=1

 Ï
 kre-kx; x é [a, +Ï), a > 0, r é R 

2. Prove the Cauchy criterion for uniform convergence (Proposition 13.2). 
3. Prove Proposition 13.5. 
 
 
14. Power Series  

Definition 14.1 A power series is a series of functions of the form £ Ï
k=0ck(x-a)k, where 

each ck and a é R.  
 
Note We will only be interested here in pointwise convergence, so we can use the whole 
battery of convergence tests we know and love. 
 
Examples 14.2 in class, including examples of which converge, and for which x they 
converge absolutely and conditionally. 
 

Proof  
For claim (a), note it suffices to prove that, if the series converges for x = a ± h (with h 
positive), then it converges absolutely for all x in the open interval (a-h, a+h). (For then, 
just take R = sup{h | the series converges for x = a ± h}.) First, since the series 
converges for x = a±h, the nth term goes to zero, whence so does its absolute value. In 
particular, the terms |cihi| are bounded, so let M be an upper bound. 
Now, let x é (a-h, a+h). Then  

 0 ≤ |ci(x-a)i| = |ci|·|x-a|i =  |ci| 



x-a

h
i
 hi ≤ M



x-a

h
i
 . 

But the series on the right is geometric with common ratio < 1, so this result follows by 
the comparison test. 
Claim (b) follows from Claim (a) using an argument by contradiction. 

Theorem 14.3 (Convergence of Power Series) 
If £ck(x-a)k is any power series, then there exists R é R

—
  such that: 

(a) the series converges absolutely if |x-a| < R, and  
(b) it diverges if |x-a| > R. Further,  
(c) it converges uniformly on any closed subinterval of (a-R, a+R). 
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For Claim (c), let [a-k, a+k] be any subinterval of (a+R, a-R), and let x é [a-k, a+k]. 
Choose B between k and R, and an upper bound M  of the terms |ciki|. Then, 

 0 ≤ |ci(x-a)i| = |ci|·|x-a|i =  |ci| 



x-a

B
i
 hi ≤ M



x-a

B
i
  ≤ M



k

b  
i
  , 

where k/b < 1. Hence the result by the Weierstrass M-test. ❖  
 
Definition 14.4 We refer to the number R in the above result as the radius of 
convergence of the power series.  
 

Proof  Follows from various results, but needs the as yet unproved result that multiplying 
or dividing the terms by k+1 does not effect the radius of convergence (and this is in the 
exercise set). 
 

Proof* First, a little notation which we will use in the proof. If Sn is the nth partial sum of 
a series £ak, write Abs(Sn) for the nth partial sum of £|ak|. Now for the proof itself. Let I 
= (a-R, a+R), and write the partial sums of the three series in question as 
 fn(x) = £ n

k=0 ak(x-a)k, gn(x) = £ n
k=0 bk(x-a)k, hn(x) = £ n

k=0 ck(x-a)k. 
How are they related? (Note that fn(x)gn(x) = hn(x) + other terms in powers of (x-a) 
larger than n.) Specifically, 
 fn(x)gn(x) = hn(x) + £ 2n

k=n dk(x-a)k, 
where each dj is a product apbq with either p or q > [n/2] (or else the power would be ≤ 

n) It suffices to show that £ 2n
k=n dk(x-a)k →0 as n→Ï for each x é I. However, 

 £ 2n
k=n |dk (x-a)k| ≤ £ 2n

k=n |dk| |x-a|k  
 ≤ Abs[fn(x)-f[n/2](x)] Abs(gn(x)) + Abs[gn(x)-g[n/2](x)] Abs(fn(x)), 

                                                
* Compare this with the (very complicated) proof in Wade, p. 201. Admittedly, his method of proof 
requires us only to use the fact that the convergence of one of the series is absolute, but that requires a lot 
more work, and is not necessary for this result. 

Corollary 14.5 (Properties of Power Series) 
If £ck(x-a)k is a power series with radius of convergence R, with f(x) = £ Ï

k=0 ck(x-a)k,  
then: 
(a) f is continuous on (x-R, x+R). 
(b) f is differentiable on (x-R, x+R), and f'(x) = £ Ï

k=1 kck(x-a)k-1, where the latter series 
has the same radius of convergence as the original one. 
(c) f is integrable on (x-R, x+R) with integral £ Ï

k=0 ck(x-a)k+1/(k+1). 

Proposition 14.6 (Multiplication of Power Series) 
If f(x) = £ Ï

k=0 ak(x-a)k and g(x) = £ Ï
k=0 bk(x-a)k are both power series with radius of 

convergence R. then f(x)g(x) = £ Ï
k=0 ck(x-a)k, where 

 ck = £i+j=kaibj. 
Moreoever, this power series also has radius of convergence at least R. 
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by the properties of the dk. But, since the series for f and g are abolutely convergent on I, 
it follows that Abs(fn(x)) and Abs(gn(x)) are convergent, and that Abs[fn(x)-f[n/2](x)] and 
Abs[gn(x)-g[n/2](x)] → 0 as n→Ï, giving the result. ❖ 
 
Exercise Set 14 
1. Find the intervals of cenvergence of the following power series:  

(a) ∑
k=0

 Ï
 (-1)k(x-2)k (b) ∑

k=0

 Ï
 
2(x-1)k

k3k   (c) ∑
k=3

 Ï
  (-1)k

(x+2)k 
k ln k   (d) ∑

k=0

 Ï
 
k!xk

kk   (e) ∑
k=1

 Ï
 

k(x-1)k

2k   

 
2. Prove the claim in Corollary 14.5: that multiplying or dividing the terms in a power 
series by any polynomial in k does not effect its radius of convergence. [Hint: adapt the 
first inequality in the proof of Theorem 14.3 to show that is the original series converges 
for x = a±h, then the new series converges for |x-a| < R for any R < h.  
 
15. Analytic Functions, Taylor Series, and Taylor's 
Theorem, 
actually, Maclaurin's Theorem (see below). 
 
Definitions 15.1 The function f: R >   ∅ R is smooth (CÏ) on an open interval J if the 
derivatives of all orders exist on J. it is analytic on J if, for each a é J, there is a power 
series P(x) centered at a such f(x) = P(x) on some open interval (a-©, a+©). We say that f 
has a power series expansion near a.  
 
Remark 15.2 By Corollary 14.5(b), it follows that every analytic function is CÏ. Is every 
CÏ function analytic? See below... 
 

 
Definition 15.4 If f: R >   ∅ R is CÏ on the interval J, then, for a é J, define its Macluarin 
Series** about a   to be the power series 

 ∑
k=0

 Ï
 
f(k)(a)

k!  (x-a)k. 

It follows from Proposition 15.3 that, if f is analytic on the interval J, then f is equal to its 
Maclaurin series expansion near every point of J. 
 
                                                
** See the footnote to Theorem 15.5. 

Proposition 15.3 (Uniqueness of Power Series Expansion) 
If f(x) = £ Ï

k=0 ak(x-a)k, then  

 ak = 
f(k)(a)

k!  . 
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Examples 15.4  
A. Some well-known Maclaurin Series are derived 

B. Let f(x) = 

  e-1/x2 if x ≠ 0
  0 if x = 0  , then f is CÏ on R but not analytic at 0. 

 
Theorem 15.5 (Maclaurin)††  
S'pose f is n+1 times differentiable on an interval J containing a and x . Then  
 f(x) = Pn(x) + Rn(x), 
where 

 Pn(x) = f(a) + (x-a)f'(a) + 
(x-a)2

2!    f"(a) + … + 
(x-a)n

n!    f(n)(a), 

and 

 Rn(x) = ⌡
⌠

a

x
f(n+1)(t) (x-t)n

n!   = 
(x-a)n+1

(n+1)!    f(n+1)(√(x)) 

for some √(x) strictly between a and x.  
Proof We start by writing 

 f(x) = f(a) + 
⌡
⌠

a

x

f'(t) 
 
dt , 

which is just the Fundamental Theorem of Calculus. We integrate by parts using the 
following table (remember that x is regarded as fixed): 
             t = x      t = a 

D I  D I  D I 
f'(t) 1  f'(x) 1  f'(a) 1 
f''(t) (t-x)  f''(x) 0  f''(a) (a-x) 
f'''(t) (t-x)2

2!   
 f'''(x) 0  f'''(a) (a-x)2

2!   

... ...  ... ...  ... ... 
f(n+1)(t) (t-x)n

n!   
 f(n+1)(x) 0  f(n+1)(a) (a-x)n

n!   

We now get:  

    f(x) - f(a) = 
⌡
⌠

a

x

f'(t) 
 
dt   

  = [  (t-x)f'(t)] 
 
x

t=a
  - [  (t-x)2

2!  f''(t)] 
 
x

t=a
  + ... + (-1)n+1 [  (t-x)n

n!  f(n)(t)] 
 

x

t=a
   

                                                
†† Some people call it "Taylor's Theorem" but I am following the lead of my own (Scottish) applied 
mathematics teacher at Liverpool University, in attributing it—rightly or wrongly—to Maclaruin. 
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     + (-1)n⌡
⌠

a

x

 f(n+1)(t) 
(t-x)n

n!   dx  

   = Middle Table - Right Table = What We Want. 
Finally, to get the alternative form of the remainder, define a function H:[a, x]→R (or 
[a, x]→R  if x < a) by  

 H(r) = f(n+1)(r) ⌡
⌠

a

x
(x-t)n

n!  . 

Then H is the product of a continuous function and a differentiable one, so that it is 
continuous. Further, if f(n+1) achieves its minimum at p and maximum at q, tnen 
 H(p) ≤ Rn(x) ≤ H(p) 
whence, by the IVT, we can find some √(x) strictly between a and x with H(√(x)) = Rn(x). 
 
 

Proof Only part (c) is worthy of any explanation. However, choosing any x and a in J 
yields a Maclaurin sum with remainder  

 |Rn(x)| ≤ 
Kn+1|x-a|n+1

(n+1)!  = 
Ln+1

(n+1)!  

which is the nth term of a convergent series for every L é R, and hence approaches 0.  
 
Examples 15.7 
A. ins, cos, ex, ln x, arctan(x)  
 
Exercise Set 15 
1. (Wade, p. 216 #1) Prove tht each of the following functions is analytic on R, and find 
its Maclaurin series about the indicated point. 
(a)  cos(3x); a = 0   (b) 3x2 - 4x + 5; a = 1  (c) sin2x; a = 0  (d) x2ex2 
2. Prove: If f(x) = £ Ï

k=0 ak(x-a)k converges on (a-©, a+©), then f is analytic on (a-©, 

a+©). [Hint: Solve f(x) = £ Ï
k=0 ak(x-a)k for f(a), since we know that a0 = f(a), and then 

stare at what you have.]  

Corollary 15.6 (A Consequence: Sufficient Conditions for Analyticity) 
Under the hypothesis of Theorem 15.5 : 
(a) We can rewrite the remainder term as 

 |Rn(x)| ≤ 
M |x-a|n+1

(n+1)!    , 

where M is an upper bound of | f(n+1)(t)| on (a, x)  (or (x, a) . 
(b) If |Rn(x)|→0 as n→Ï then f is analytic at a. (It follows from one of the exercises that f 
is analytic near a as well.) 
(c) If f  is smooth on J and if there exists K é R with  |f(n+1)(t)| ≤ Kn for all t é J, then f 
is analytic on J. 
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3. Prove or give a counterexample: Let f be a smooth function on an open interval J, and 
s'pose that  the Maclaurin series of f about a é J converges. Then f is analytic at a.  
4. Binomial Series Prove: If |x| < 1, and r is any real number, then 

 (1+x)r = 1 + rx + 
r(r-1)

2!  x2 + 
r(r-1)(r-2)

3!  x3 + ... 

(Note, it is not enopugh simply to produce the Maclaurin series: you must prove that it 
converses.) 
5. Prove that e is irrational. 
 
We now switch texts to H.L. Royden, Real Analysis (Macmillan) 
 
16. Sigma Algebras, Borel Sets and Outer Measure 
 
First a comment: Let us look at our old friend, 

 f(x) = 

  1 if x é Q
  0 if x � Q  . 

We can express f as the limit of an increasing sequence of integrable functions as 
follows: First enumerate all the rationals, writing Q = {r1, r2, ...}. Then, for each n ≥ 1, 
define 

 fn(x) = 

  1 if x é {r1, r2, ..., rn}

  0 otherwise  . 

Then the fn are integrable (with integral 0) since they have only finitely many 
discontinuities. Further, fn clearly increases to f, and yet f is not integrable. There is even 
a more compelling reason not to be happy with Riemann integrable functions: If we 
define the "distance" between two functions f and g by 

 ||f - g|| = ⌡⌠
a

b

|f(x) - g(x)| dx  

then there exist Cauchy sequences of Riemann integrable functions with respect to this 
distance function that do not converge to a Riemann integrable function, suggesting that 
we are missing something (what would the reals be without the irrationals?). In abstract 
terms (which could be made precise), the space of Riemann integrable functions is not 
complete. What is missing is a "good" theory of integration that permits us to integrate 
more functions than the Riemann integral. 
 We begin somewhat abstractly. 
 
Definition 16.1 Let X be a set. A collection of subsets  A of X is called an algebra if it is 
closed under the operations of (pairwise) union and complement.   
 
Remark It follows from induction that algebras are closed under finite unions, and it 
follows by DeMargan's laws that they are closed under intersection: 
 (AÚB) = (AÚB)'' = (A'ÆB')' 
Hence, by induction again, they are also closed under finite intersections. 
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Examples 16.2 
A. Let X be arbitrary, and take A = {X, Ø} 
B. Let X be arbitrary, and take A to be the collection of all subsets of X. 

C. Let X = R, let a é R, and take A = {R, Ø, a, R-{a}} 

D. Let X = R, and take A to be the set of all finite unions of intervals (including the 
degenerate intervals Ø = (0, 0) and {a} = [a, a]).  
 
We can get more examples from the following. 
 

Proof Here is a constructive proof. Define sets A = A1 ¯ A2 ¯ .... ¯ An ¯ ... 

inductively by taking the elements of An+1 to be the finite unions of elements of An and 

their complements. Then take A(C) = ÆnAn. Then every element of A(C) is obtained 

from elements of A by taking a finite sequence of unions and complements, showing that 
every algebra containing C, being closed under these operations,  must also contain A(C). 
Thus, it suffices to show that A(C) is an algebra. However, if S and T are in A(C), then 
they are in An for some n. But then  S' and SÆT are in An+1 and hence in A(C). ♣ 
 
Definition 16.4 A ß-algebra is an algebra A that is also closed under countable unions. 
That is, if A1, A2, ..., An, ... are in A, then so is ÆiAi. 
 
Remark It now follows by De Morgan that ß-algebras are also closed under countable 
intersections. 
 
The following proposition is proved in the exercises: 
 

Proposition 16.3 (The Algebra Generated by a Collection of Subsets) 
Given any collection C of subsets of X, there is an algebra A(C) of subsets of X with the 
following property: 
 If A is any algebra that contains C, then A ˘ A(C).  
In other words, A(C) is the "smallest" algebra containing C. We call A(C) the algebra 
generated by C. 

Proposition 16.5 (The ß-Algebra Generated by a Collection of Subsets) 
Given any collection C of subsets of X, there is a ß-algebra A(C) of subsets of X with the 
following property: 
 If A is any ß-algebra that contains C, then A ˘ A(C).  
In other words, A(C) is the "smallest" ß-algebra containing C. We call A(C) the ß-
algebra generated by C. 
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Definition 16.6 The collection B  of Borel sets in R is the ß-algebra generated by the 
collection of open intervals  in R. 
 
Examples 16.7 (of Borel Sets) The following subsets are in B. 
A.  Single points  B. Countable subsets of R (eg. Q) 
C. Complements of countable sets (eg. R-Q) 
D. The Cantor Set = ÚkJk where the Jk are finite disjoint unions of closed intervals  
defined inductively as follows: 
 J0 = [0, 1] 
 Jn is obtained from Jn-1 by removing the middle 1/3  of each of its components. 
The Cantor set consists of all real numbers between 0 and 1 that have a ternary decimal 
representation with all 0's and 2's (no 1's). It follows that C is uncountably infinite. 
 
Definitions 16.8 From now on, we will work with the extended real numbers,  

 R– = R Æ {-Ï, Ï}.  

The length of the interval I is the element of R–  given by its usual length if it is finite, 
and Ï if it is infinite. Similarly, the sum of a series with positive terms (whether or not 

it converges) is the element of R–  defined in the natural way. 
If A ¯ R, a countable cover of A  by open intervals is a countable collection {I1, I2, ..., 
In, ...} of open intervals whose union contains A. 
 
OK now we are ready for the real definition 
 

Definition 16.9 If A ¯ R, then the outer measure, µ*(A) of A, is the element of R–  
given by 

     µ*(A) = inf {∑
k=1

 Ï
 |Ik|  : {I1, I2, ..., In, ...} is a countable cover of A by open intervals}.  

 
Examples 16.10 
A. µ*(Ø) = 0   B. µ*({a}) = 0 
C. Countable sets have outer measure zero. 
 

Proof Part (a) is in the exercise set. For part (b), let I be the interval in question. We can 
assume that I is non-degenerate by the above examples. 
Case 1: I is a finite closed interval; I = [a, b] 
Since {(a-œ, b+œ)} is one of the possible countable covers in question, µ*(I) ≤ b-a + 2œ 
for all œ, so that µ*(I) ≤ b-a. The hard part is to show that µ*(I) ≥ b-a. Thus, let {I1, I2, 

Proposition 16.11 (Properties of Outer Measure) 
(a) If A ˘ B, then µ*(A) ≥ µ*(B) 
(b) The outer measure of any interval is its length. 
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..., In, ...} be any countable cover of I by open intervals. By Heine-Borel, [a, b] is 
covered by finitely many of the Ii, say{I1, I2, ..., In} (renumbering if necessary). It 

suffices to show that £ n
k=0 |Ik| ≥ b-a.  

 Since a é Æ n
k=0 Ik, there is an Ik — call it I1 by renumbering—with a é I1 = 

(a1, b1), say. If b1 > b, then we have |I1| = (b1-a1) ≥ b-a = |I|, and we are done. 
Otherwise, there is an interval—call it I2 = (a2, b2) containing b1,  so that 
 a1 < a2 < b1 < b2, 
If b é I2, then |I1| + |I2| > b2-a1 > b-a, and again we are done. Continuing in this way, 
we eventually wind up with b é Ir, and so we are eventually done. 
Case 2: I is (a, b], [a, b), or (a, b). 
The "easy" part (µ*(I) ≤ |I|) still works here, and, for the "hard" part, notice that, for any 
œ>0, we can find a closed interval J = [p, q] ¯ I with |J| ≥ |I|.-œ. Hence 
 µ*(I) ≥ µ*(J) = |J| ≥ |I|-œ 
for all œ, showing that µ*(I) ≥ |I|, as required for the hard part. 
Case 3: I is an infinite interval. 
In this case, I contains finite closed intervals or arbitrarily large length, and hence its 
outer measure is also arbitrarily large.  
 

Proof Let œ>0. By definition of µ*(An) we can find, for each n, a countable cover Cn of 
An by open intervals such that the sum of the lengths of the intervals in Cn add to ≤ 
µ*(An)+œ/2n. Since the ÆCn is now a cover of ÆAn by open intervals, it follows that 
µ*(Æan) ≤ £n(µ*(An)+œ/2n) = £nµ*(An) + œ. Since œ is arbitrary, the result follows.  
 
Note that we cannot expect there to be equality unless the union is a disjoint one. Even 
then, there are examples where the additivity is not strict. 
 
Exercise Set 16 
1. Describe explicitly (that is list all the elements) of the ß-algebras generated by the 
following collections of subsets of R. 
 (a) {{0}, {1}} (b) {[0, 1]}  (c) {[0, 1], [2, 3]}  (d) N = {{0}, {1}, {2}, ... } 
(you need not list all the elements in (d); just describe how to obtain them) 
2. Prove: If A is any algebra of subsets, and {A1, A2, ..., An, ...} is a sequence of subsets 
in A, then there exists a sequence of mutually disjoint subsets {B1, B2, ..., Bn, ...} such 
that ÆiAi = ÆiBi. 
3. Prove Proposition 16.5. 
4. Prove Proposition 16.11 (a):  If A ˘ B, then µ*(A) ≥ µ*(B). 
5. Prove in two lines: if µ*(B) = 0, then µ*(AÆB) = µ*(A) 
 

Proposition 16.12 (Outer Measure Is ß-Subadditive) 
If {An} is any countable collection of subsets of R, then  
 µ*(ÆAn) ≤ £µ*(An). 
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17. Measurable Sets and Lebesgue Measure 
 
Definition 17.11 The set E ¯ R is (Lebesgue) measurable if, for every A ¯ R, one has 
 µ*(A) = µ*(AÚE) + µ*(AÚE'). 
If M is the collection of measurable sets, then the restriction µ of µ* to M is called 
Lebesgue measure. In other words,, if E é M, then its Lebesgue measure is defined by 
 µ(E) = µ*(E). 
 
Notes 17.2 
(a) One always has µ*(A) ≤ µ*(AÚE) + µ*(AÚE') as a consequence of the ß-subadditive 
property. 
(b) E measurable ⇒ E' measurable. 
 
Examples 17.3 
A. R and Ø are automatically measurable. 
B. µ*(E) = 0 ⇒ E measurable (since µ*(A) ≥ µ*(AÚE') regardless of E) 
C. The interval (a, +Ï) is measurable for each a é R.  
Indeed, if A ¯ R and {In} is a countable cover of A by open intervals, then, for every 
œ>0, {InÚ(a, +Ï)} and {InÚ(-Ï, a+œ/2n)} are, respectively, countable covers of 
AÚ(a, +Ï) and AÚ(a, +Ï)' by open intervals, respectively, so that 
 µ*(AÚ(a, +Ï)) + µ*(AÚ(a, +Ï)') ≤ £(In)+œ      (summing the lengths involved) 
Since the LHS is independent of n, we have 
 µ*(AÚ(a, +Ï)) + µ*(AÚ(a, +Ï)') ≤ £(In), 
and hence, by taking infimum of the RHS, we get 
 µ*(AÚ(a, +Ï)) + µ*(AÚ(a, +Ï)') ≤ µ*(A). 
 
We get all the other intervals (and more) by the following. 
 

Proof First we show closure under finite unions (for which it suffices to show closure 
under pairwise union). Let A ¯ R. Since E is measurable,  
 µ*(A) = µ*(AÚE) + µ*(AÚE')  ... (1) 
Since F is measurable, 
 µ*(AÚE') = µ*(AÚE'ÚF) + µ*(AÚE'ÚF') 
  = µ*(AÚE'ÚF) + µ*(AÚ(EÆF)')  ... (2)  by De Morgan 
Substituting (2) in (1) yields 
 µ*(A) = µ*(AÚE) + µ*(AÚE'ÚF) + µ*(AÚ(EÆF)')      ... (3) 
However, since E is measurable, 
 µ*(AÚ(EÆF)) = µ*(AÚ(EÆF)ÚE) + µ*(AÚ(EÆF)ÚE') 
   = µ*(AÚE) +  µ*(AÚE'ÚF) 

                                                
1 This definition is due to Carathéodory. 

Proposition 17.4 
The collection M of measurable sets is a å-algebra. 
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Substituting this into (3) gives 
 µ*(A) = µ*(AÚ(EÆF)) + µ*(AÚ(EÆF)'), 
as claimed. Note that, since we already know that complements of measurable sets are 
measurable, it follows that the collection of measurable sets is an algebra. 
Before showing ß-additivity, we first establish the following claim: 
Claim: if E and F are disjoint measurable sets, then, for every A ¯ R, one has 
 µ*(AÚ(EÆF)) = µ*(AÚE) + µ*(AÚF). 
Indeed, the left-hand side is equal to  
 µ*(AÚ(EÆF)ÚE) + µ*(AÚ(EÆF)ÚE')  
by measurability of E, and this in turn is equal to 
 µ*(AÚE) + µ*(AÚF) 
by a direct check on the sets level, since E and F are disjoint. 
 Now for ß-additivity. S'pose that {En} is a collection of measurable sets. Then we 
can assume the En are mutually disjoint (why?) 

 µ*(A) = µ*(AÚ[Æ n
k=1En]) + µ*(AÚ[Æ n

k=1En]') 

  ≥ µ*(AÚ[Æ n
k=1En]) + µ*(AÚ[Æ Ï

k=1En]') 
for every n. Since the Ei are mutually disjoint, we can rewrite this as 

 µ*(A) ≥ £ n
k=1µ*(AÚEn) + µ*(AÚ[Æ Ï

k=1En]') 
so that, taking limits, 
 µ*(A) ≥ £ Ï

k=1µ*(AÚEn) + µ*(AÚ[Æ Ï
k=1En]'). 

Finally, an application of ß-subadditivity of µ* gives the result we want: 
 µ*(A) ≥  µ*(AÚ[Æ Ï

k=1En]) + µ*(AÚ[Æ Ï
k=1En]').  � 

 
Notes 17.6  
In the proof of the above proposition (see the claim) we have shown that, if E and F are 
measurable sets, then 
(a) If E and F are disjoint, then µ(EÆF) = µ(E) + µ(F). 
(b) Hence, if F ¯ E, then µ(E-F) = µ(E) - µ(F). 
 

  

Proof (a) is Proposition 16.12. 
(b) In view of (a), it suffices to show µ(ÆEn) ≥ £µ(En). By the Claim in the proof of 
Proposition17.4, we have, with A = R, 

Corollary 17.6 
 M ˘ B, 
that is, all the Borel sets are measurable. 

Proposition 17.7 (Properties of Lebesgue Measure) 
Let {En} be a sequence of measurable sets. Then: 
(a) µ(ÆEn) ≤ £µ(En) 
(b) If the En are mutually disjoint, then µ(ÆEn) = £µ(En)  (ß-additivity) 
(c) If En↑E or En↓E then  µ(E) =  lim 

n∅Ï
µ(En). 
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 µ(Æ n
k=1Ek) = £µ( 

n
k=1Ek). 

But then 
 µ(Æ Ï

k=1Ek) ≥ µ(Æ n
k=1Ek) = £ n

k=1µ(Ek) 
for all n, showing the result by letting n→Ï. 
(c) En↑E means that En ¯ En+1 for all n, and that ÆEn = E.  Take E0 = Ø and Fn = 
En - En-1 for all n ≥ 1. Then  
 µ(E) = µ(ÆEn) = µ(ÆFn) = £µ(Fn)  
 = £µ(En-En-1) = £µ(En) - µ(En-1) =  lim 

n∅Ï
µ(En), 

as required. 
On the other hand, if En↓E, then take F1 = Ø, and Fn = E1 - En. Then Fn↑(E1-E), and 
so 
 µ(E1) - µ(E) = µ(E1-E) =  lim 

n∅Ï
µ(Fn) =  lim 

n∅Ï
µ(E1-En) =  lim 

n∅Ï
µ(E1)-µ(En) 

 = µ(E1) -  lim 
n∅Ï

µ(En), 

giving the result.   
 
Exercise Set 17 
1. (a) If A ¯ R and x é R, define A+x = {a+x | a é A}. Prove that µ*(A+x) = µ*(A) for 
all x é R. 
(b) Show that A is measurable iff A+x is measurable for all x é R. 
2. Generalizing (1), let A ¯ [0, 1), let +̀ denote addition modulo 1, (so that, for example, 
0.8 +̀ 0.3 = 0.1) Prove that µ*(A+̀x) = µ*(A) for all x é ™[0, 1). 
(b) Show that A is measurable iff A+̀x is measurable for all x é [0, 1). 
3. Show that the Cantor set has measure 0. 
4. Constructing An Unmeasurable Set  
Define an equivalence relation on [0, 1) by a ‡ b if a-b é Q. Let T be obtained by 
choosing, as its elements, exactly one member of each equivalence class. 
(a) Prove that the sets {T+`r | r é Q} are mutually disjoint subsets of (0, 1]. 
(b) Prove that Ær (T+`r) = (0, 1]. 
(c) Deduce, using ß-additivity and the results of #2, that T cannot be measurable. 
 
 
18. Measurable Functions and the Lebesgue Integral 
 
Proposition 18.1 
Let f: R >   ∅ R have a measurable domain D. Then the following are equivalent. 
(a) f-1(a, +Ï) is measurable for every a é R. 
(b) f-1[a, +Ï) is measurable for every a é R. 
(c) f-1(-Ï, a) is measurable for every a é R. 
(d) f-1(-Ï, a] is measurable for every a é R. 
(e) f-1I is measurable for every interval I of R. 
When one (and hence all) of these conditions hold, we say that f is measurable. 
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Proof 
(a) ⇒  (b) 
f-1[a, +Ï) = f-1(Ún(a-1/n, +Ï)) = Ún f-1(a-1/n, +Ï), which is a countable 
intersection of measurable sets, and hence measurable. 
(b) ⇒  (c) f-1(-Ï, a) = D - f-1[a, +Ï) 
(c) ⇒  (d) f-1(-Ï, a] = f-1(Ún(a, a+1/n)) = Ún f-1(a, a+1/n), which is a countable 
intersection of measurable sets, and hence measurable. 
(d) ⇒  (a) f-1(a, +Ï) = D - f-1(-Ï, a] 
(a), (b), (c), or (d) ⇒  (e) Every interval I is either R, or can be expressed as the 
intersection of two intervals of the above types, so the result follows. 
(e) ⇒ (a) A fortiori.  
 
(In particular, f-1(a) is measurable for each a é R, since {a} = [a, a].) 
 
Examples 18.2 
A. The identity function f: D→R; f(x) = x on any measurable set D 
B. Constant functions f: D→R; f(x) = K on any measurable set D 

C. If D is measurable, define ≈D: D→R by ≈D(x) = 

  1 if x é D
  0 if x � D , called the 

characteristic function of D . Notice that ≈D
-1(I) is either Ø, D, or R, depending on 

whether I contains 0 and/or 1. 
 
Moreover, we can add, subtract, multiply, etc. measurable functions by the following 
result: 
 

Proof  
Part (a) follows from the following facts, either immediate or proved in the exercises: 
 (f+g)-1(-Ï, a) = Ær é Qf-1(-Ï, r) Ú g-1(-Ï, a-r) 

 (cf)-1(-Ï, a) = f-1(-Ï, a/c) if c > 0, and f-1(a/c, +Ï) if c < 0. 
 (f2)-1(a, +Ï) = f-1( a , +Ï) 

 fg = 12 [(f+g)2-f2-g2] 

 (1/f)-1(a, +Ï) = 

f-1(1/a, +Ï) if a > 0
 f-1(0, +Ï) Æ f-1(-Ï, 1/a) if a < 0  

 max{f, g}-1(a, +Ï) = f-1(a, +Ï) Æ g-1(a, +Ï) 
 min{f, g} = -max{-f, -g} 
(b) follows from the fact that supn{fn}-1(a, +Ï) = Æn fn-1(a, +Ï) and a similar fact for 
inf. 

Proposition 18.3 (Sums, Products, Quotients, Sups, Infs, and Limits) 
(a) If f and g are measurable, then so are f+g, f-g, cf, fg, f/g, max{f, g}, and min{f, g} 
wherever these are defined. 
(b) If {fn} is any sequence of measurable functions, then supn{fn} and infn{fn} are 
measurable. 
(c) If the fn are measurable, and fn→f  pointwise, then f is measurable. 
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(c) If f(x) > a, then fn(x) > a for every n ≥ some N, so that x é ÆN Ún≥N fn-1(a, +Ï). 
Conversely, if x é ÆN Ún≥N f-1(a, +Ï), then there exists an N with fn(x) > a for every n 
≥ N giving f(x) > a.  
 
Examples 18.4 
A. polynomials, rational functions, linear combinations of characteristic functions  
 
Definition 18.5 A simple function @ is a measurable function that assumes only finitely 
many values. 
 
Note that products, sums, etc. of simple functions are simple. Also, if @ is simple, then @ 
= å1≈A1

 + å2≈A2
 + ... + ån≈An

 , where Ai = @-1(åi). Thus, simple functions are 
measurable. In particular 
 
Definition of the Lebesgue Integral 
If @ = å1≈A1

 + å2≈A2
 + ... + ån≈An

 is simple, then define the integral of @  by 

 
⌡
⌠@ 

 
dµ  = å1µ(A1) + å2µ(A2) + ... + ånµ(An) 

If E is any measurable set, also define 

 
⌡
⌠

E

@ 
 
dµ  = 

⌡
⌠@·≈E

 
 
dµ  

If f is any measurable bounded function, define 

 
⌡
⌠

E

f 
 
dµ  = sup@≤f⌡

⌠

E

@ 
 
dµ , 

where the sup is taken over all simple functions @ ≤ f. Note that if f is unbounded, then 
we can't approximate it too easily by simple functions. However: 
If f is any non-negative measurable function, define 

 
⌡
⌠

E

f 
 
dµ  = suph≤f⌡

⌠

E

h 
 
dµ  

where the sup is taken over all bounded measurable functions h whose support has finite 
measure. Finally, if f is any measurable functions such that both f+ and f- are integrable 
(that is, their integrals are zero). Then define 

 
⌡
⌠

E

f 
 
dµ  = 

⌡
⌠

E

f+ 
 
dµ  - 

⌡
⌠

E

f- 
 
dµ . 

 
Some nice properties of the Lebesgue Integral: 
(1) ("Monotone Convergence Theorem)") If fn→f is an increasing sequence of 

measurable functions, then 
⌡
⌠

E

fn 
 
dµ →

⌡
⌠

E

f 
 
dµ  
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(2) ("Dominated Convergence Theorem)") If fn →f and such that |fn| ≤ some fixed 

integrable function g, then 
⌡
⌠

E

fn 
 
dµ →

⌡
⌠

E

f 
 
dµ  

 
Exercise Set 18 
1. Show that: 
(a) (f+g)-1(-Ï, a) = Ær é Qf-1(-Ï, r) Ú g-1(-Ï, a-r) 

(b) (1/f)-1(a, +Ï) = 

f-1(1/a, +Ï) if a > 0
 f-1(0, +Ï) Æ f-1(-Ï, 1/a) if a < 0  

2. We say that f = g almost everywhere (ae) if f(x) = g(x) for every x outside some set 
of measure zero. Show that every function equal, almost everywhere, to a measurable 
function is measurable. 
3. (Extremely hard!) Show that, if f: [a, b]→R is measurable and œ > 0, then there exists 
a continuous function g with  
 µ{x :  |f(x)-g(x)| > œ} < œ. 
[Hint: First construct a suitable simple function. Then note that a measurable set has 
measure very close to a union of intervals. The latter fact allows you to approximate the 
simple function with a suitable step function, and finally get rid of the discontinuities.] 


