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Math 211     Linear Algebra     Skeleton Notes     S. Waner 
 
1. Row Operations 
 
Definitions 1.1 A field is a set F with two binary operations +, ¿, such that: 

1. Addition and multiplication are commutative:  
 ∀x, y é F, x + y = y + x and xy = yx. 
2. Addition and multiplication are associative:  
 ∀x, y, z é F, x + (y + z) = (x + y) + z and x(yz) = (xy)z.. 
3. Addition and multiplication are unital: 
 There exists a unique elements 0 é F  and 1 é F (with 0 ≠ 1) such that 
 ∀x é F, 0 + x = x + 0 = x and 1·x = x·1 = x. 
4. Existence of inverses:  

For each element x é F, there exists a unique element (-x) é F such that 
x + (-x) = (-x) + x = 0. 
For each nonzero element x é F, there exists a unique element x-1 é F 
such that xx-1 = x-1x = 1. 

5. Multiplication distributes over addition: 
 ∀x, y, z é F, one has x(y + z) = xy + xz. 

A subfield K of a field F is a subset that is a field in its own right under the operations 
inherited from F. We often refer to the elements of a field as scalars. 
 
Examples 1.2 
A. C, the field of complex numbers 
B. R, the field of real numbers is a subfield of C.   
C. The set Q of rational numbers, is a subfield of R and hence C. 
D. Zp, the field of integers modulo the prime p. 
E. N (the set of non-negative integers) is not a subfield of R; nor is the set Z of integers. 
 
Note Henceforth, we shall assume F to be a subfield of C.  
 
Definitions 1.3 A system of m  linear equations in n  unknowns is a collection of 
equations of the form 
 a11x1 + a12x2 + . . . + a1nxn = y1 
 a21x1 + a22x2 + . . . + a2nxn = y2 
 … 
 am1x1 + am2x2 + . . . + amnxn = ym , 
 
where each aij é F. The xi are called the unknowns. The system is homogeneous if each 
yi = 0. A solution of a system of linear equations is an n-tuple (s1, s2, . . . , sn) of 
elements of F which satisfies the above system of equations.  
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Definitions 1.4 An m¿n  matrix over the field F is a function A from the set {(i, j) | 1 
≤ i ≤ m, 1 ≤ j ≤ n} to F. We write A(i, j) as Aij or aij, and represent A by the following 
array of elements of F. 
 

 A = 









a11 a12 … a1n

a21 a22 … a2n

    
   

am1 am2 … amn

 . 

 
We represent the system of equations in Definition 1.3 by the formal equation  
 AX = B, 
where A is as above, X = [x1   x2   …   xn]t, and B = [b1   b2   …   bm]t.  
 
Definition 1.5 An elementary row operation on the m¿n matrix A over F is a rule of 
one of the following types: 
 1. The operation Ri → cRi for c ≠ 0 in F. 
 2. The operation Ri → Ri + cRj 
 3.  The operation Ri ↔ Rj  
The m¿n matrices A and B are said to be row equivalent if B can be obtained from A by 
a finite sequence of elementary row operations. 
 

 
Note The converse to 1.6(b) is also true—see later. 
 
Definition 1.7 The m¿n matrix A is in row reduced echelon form if: 
 (a) The leading entry (i.e., first nonzero entry) of each row is a 1. 

(b) The column of each leading entry contains only one nonzero entry (which 
must therefor be the leading entry itself). 
(c) The leading entry of each row must be to the left of those of the rows below it, 
with rows of zeros (if any) at the bottom. 

 
Examples in class. 
 

 
Notes 
1. In a row reduced matrix, there can be no more than one leading entry per row. Also, 
since the column of each leading entry is clear, there can be no more than one leading 
entry per column. 

Proposition 1.6  
(a) Row equivalence is an equivalence relation. 
(b) If A and B are row equivalent, then the set of solutions to AX = 0 ad BX = 0 coincide.  

Theorem 1.7  
Every m¿n matrix A is row-equivalent to a matrix in row reduced echelon form. 
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2. If A is a square matrix in row reduced echelon form, then every column has a leading 
entry iff A is the identity matrix. 
3. If A is row reduced echelon with leading entries in columns i1, i2, . . ., ir, and no 
leading entries in columns j1, j2, . . ., js, then the system of equations AX = 0 has the 
form  

 x
 
i1
  = F1(x

 
j1
 , x

 
j2
 , . . . , x

 
js
 ) 

 x
 
i2
  = F2(x

 
j1
 , x

 
j2
 , . . . , x

 
js
 ) 

 . . . 

 x
 
ir
  = Fr(x

 
j1
 , x

 
j2
 , . . . , x

 
js
 ), 

 
where the Fk are linear combinations. (The rows of zeros don't say anything about the 

solution.) Thus, we can choose the x jt  to be arbitrary, and still obtain a solution. In other 
words, there are infinitely many solutions. 
  

Proof  
(a) Since the solution set of the system AX = 0 is invariant under row operations, we can 
assume that A is in row reduced echelon form. Since m < n, A has fewer rows than 
columns, so there are not enough leading entries for all the columns (see the above note). 
Part (a) now follows from Note 3 above. 
(b) If m = n, and A is row equivalent to the identity matrix, then AX = 0 has only the 
single solution 0. (Read off the solution, which does not depend on row operations.) 
Conversely, if AX = 0 has only the single solution 0, then row reduction must lead to one 
leading entry per column, or else there is a column without a leading entry, and we are in 
part (a), leading to more than one solution. Hence, row reduction must lead to the 
identity. ◆  
 
Definition 1.9 The augmented matrix of a system AX = B is the matrix  
 

 A = 









a11 a12 … a1n b1

a21 a22 … a2n b2

     
    

am1 am2 … amn bm

  . 

 
Note Row operations of the augmented matrix do not effect the solution of AX = B. 
Thus, to solve such a system, all one need do is row reduce the augmented matrix. 
  

Proposition 1.8  
Let A be an m¿n matrix.  
(a) If m < n, then the system AX = 0 has infinitely many solutions. 
(b) If m = n, then the system AX = 0 has only the zero the solution iff A is row-
equivalent to the identity matrix. 
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Proof of the following proposition is left as homework. 

 
Exercise Set 1 
1. Find all possible solutions of the following systems 
 (a) x1  +  x2 = 1 (b)  x1 + x2 - x3 = 0  
  ix1         -  x3 = 0  ix1 -  4x2 = 0 
  (2+i)x2 + x3 = 0  (1-i)x1 + 5x2 - x3 = 0 
 
2. Prove that the interchange of two rows in a matrix may be accomplished by a sequence 
of elementary row operations of the other two types. 
3. Prove Proposition 1.10. 
4. Prove that, if A and B have entries in the subfield E of F, then all solutions of AX = B 
are in E. 
 
2. Matrix Algebra 
 
Definitions 2.1 We define the sum of two matrices, scalar multiples of a matrix, and 
product of two matrices as follows. (All matrices are over the field F.) 

(a) If A and B are both m¿n matrices, then A+B is the matrix over F whose entries 
are given by 
 [A+B]ij = Aij + Bij. 
(b) If A is a m¿n matrix and c é F, then cA is the matrix over F whose entries are 
given by 
 [cA]ij = cAij. 
(c) If A is an m¿n matrix, and B is an n¿p matrix, then AB is the matrix over F 
whose entries are given by 

 [AB]ij = ∑
 k=0 

 n 
AikBkj . 

We also define: -A to be (-1)A, the zero matrix 0 to be the matrix all of whose entries 
are 0, and the identity matrix I to be the square matrix (one for each n) whose ijth entry is  

 ©ij = 

 1 if i = j;
 0 if i ≠ j.   

 
Examples 2.2 
A. Some numerical examples, including identity matrix. 
B. The notation for a system of equations is consistent with the above definitions. 
C. Example where AB ≠ BA. 
 

Proposition 1.10 
(a) In the system AX = B, exactly one of the following can occur: a unique solution, no 
solutions, or infinitely many solutions. 
(b) If m < n, then the system AX = B either has no solutions, or has infinitely many 
solutions. 
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Note Numerous other properties, such as 0A = 0 (whether the 0 on the left is a scalar of a 
matrix), (-1)A = -A, -(A+B) = -A - B, AnAm = An+m, etc., follow formally from 
those above. In fact, some of the properties above follow from others! 
 
Definition 2.4 An elementary matrix is an n¿n  matrix E obtained from the identity 
matrix by performing a single row operation e on it. Thus, E = e(I), and there are three 
types (illustration in class).   
 

 
Note Proposition 2.5 says that elementary row operations are nothing more than 
multiplication by elementary matrices. 
 
Definition 2.6 If A is a n¿n matrix, then A is invertible if there is an n¿n matrix B such 
that AB = BA = I. When this occurs, we call B (the) inverse of A and write B = A-1.  
 
Examples 
A. All elementary matrices.    
B. If A is any row-reduced n¿n matrix, then A is invertible iff A contains no rows of zeros 
(because how can you get a “1” by multiplying with a row of zeros?)  
C. Method for calculating inverses. (Justification in the exercises.) 
 

 

Proposition 2.3  
The following properties hold for matrices A, B and C, and scalars ¬, µ, whenever the 
expressions make sense. 
(a) (A+B)+C = A+(B+C)    (AB)C = A(BC)  (associativity) 
(b) A+B = B+A      —  (commutativity of addition) 
(c) A+0 = 0+A = A    AI = IA = A  (identity) 
(d) A+(-A) = (-A)+A = 0   discussion to come  (additive inversion) 
(e)  ¬(A+B) = ¬A + ¬B    (¬+µ)A = ¬A + µA (distributivity of sc. mult.) 
(f) (¬µ)A = ¬(µA)   (¬A)B = ¬(AB) (associativity of sc. mult.) 
(g) 1.A = A       (identity for sc. mult.) 
(h) A(B+C) = AB + AC    (A+B)C = AC + BC (distributivity) 

Proposition 2.5  
(a) If A is any n¿k matrix, and E is any n¿n elementary matrix, then EA = e(A). 
(b) A is row-equivalent to B iff A = PB, where P is a product of elementary matrices. 
(c) A is row-equivalent to I iff A is a product of elementary matrices. 

Proposition 2.6  
Let A be any invertible n¿n matrix over F. Then: 
(a) A-1 is unique. 
(b) A-1 is invertible, with inverse A. 
(c) If B is another n¿n invertible matrix, then AB is also invertible, with (AB)-1 = B-1A-1. 
(d) If B is another n¿n matrix, then AB is invertible iff B is invertible.  
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Proof of (c) in Exercise Set 2. 
 
In fact, we have the following. 
 

Proof 
(a)⇒(b) Let C be the row-reduced form of A. Then C = PA, where P is a product of 
elementary matrices. P is invertible by Corollary 2.7(b). By Proposition 2.6(c), C is 
invertible, since A and P are. Thus, C must be the identity. (See Example B above.) 
(b)⇒(c) Proposition 2.5(c) 
(c)⇒(d) Write A = E1E2. . . Ek , where the Ei are elementary matrices. Then A is 
invertible, by Corollary 2.7(b) and so AX = 0 ⇒ X = A-10 = 0. 
(d)⇒(e) If AX = Y failed to have a solution for some Y, then A would have to reduce to a 
matrix with a row of zeros (or else the row operations that reduce A to the identity with 
also produce a solution). But then A would not be invertible, by Example B above. 
(e)⇒(f) If we take Yi to be the i th column of the identity matrix, an Xi to be a solution to 
AX = Yi, then AB = I, where B is the matrix whose columns are the Xi. 
(f)⇒(g)  Write AB = I. Claim that, in fact, A must in fact be invertible. Otherwise, by 
Example B, A would reduce to a matrix S with a row of zeros, giving PA = S where P is 
invertible and S has a row of zeros. But then P = PI = PAB = SB, which too has a row of 
zeros (look at the zero row of S times anything). But how an invertible matrix have a row 
of zeros? 
(g)⇒(a) Write BA = I for some B. Then B has a right inverse and is therefore invertible, 
by the argument above. Thus, A is also invertible, by Proposition 2.6(d). ◆   
 
 
Exercise Set 2 
H&K # 1, 2, 3, 7., p. 26 # 3, 9, 11 
Also: Justify the method for calculating the inverse in Example C. That is, show that it 
works. 
Hand In:  

Corollary 2.7 
(a) Arbitrary products of invertible matrices are invertible. 
(b) Products of elementary matrices are invertible. 
(c) If a matrix is row equivalent to I, then it is invertible. 
(d) A and B are row equivalent iff A = PB, where P is some invertible matrix. (Compare 
2.5(b).) 

Theorem 2.8 (Invertibility) 
If A is an n¿n matrix, then the following are equivalent: 
(a) A is invertible. 
(b) A is row-equivalent to I. 
(c) A is a product of elementary matrices. 
(d) The system of equations AX = 0 has only the trivial solution. 
(e) The system of equations AX = Y has solutions for every choice of Y. 
(f) A has a right inverse. 
(g) A has a left inverse. 
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1. Prove Proposition 2.3 (b) and (h) (only one of them). 
2. Prove that if 0A = 0, (where the 0's denote zero matrices). 
3. Prove that, if A and B are n¿n matrices, then AB is invertible iff A and B are both 
invertible. Conclude that, if a product A1A2. . . An of n¿n matrices is invertible, then so is 
each of the factors Ai.  

4. (H&K, p. 21 # 4) Let A = 




1 -1 1

2 0 1
3 0 1

  . Find elementary matrices E1, E2, . . . , Ek 

such that A = E1E2. . . Ek . 
5. Show that, if A and B are two square matrices such that AB = 0, then either A or B is 
not invertible. 
 
 
3. Vector Spaces and Subspaces 
 
Let F be a field. 
 
Definition 3.1 A Vector space V over F is a set V of vectors together with a operations 
V¿V’V, called vector addition (we write v + w for the sum of v and w  in V) and 
F¿V’V, called scalar multiplication (we write cv for the product of c é F and v é V)  
such that the following hold.  
(a) V is an abelian group under addition. 

Addition is commutative: v + w = w + v for all v, w é V. 
Addition is associative: v + (w + u) = (v + w) + u for all v, w, u é V 
Addition is unital: there is a unique element 0 é V such that v + 0 = 0 + v = v 
for all v é V. 
Existence of additive inverses: for every v é V, there exists a unique element -v 
é V such that v + (-v) = (-v) + v = 0. 

(b) Scalar multiplication is  unital, associative and distributive. 
Unital: 1v = v for all v é V. 
Associative: c(dv) = (cd)v for all v é V and c, d é F. 
Distributive: c(v+w) = cv + cw and (c+d)v = cv + dv for all v, w é V and c, d é 
F.  

 
Examples 3.2 
 A. {0} is a vector space over F, called the trivial vector space.  
 B. R is a v.s. over R.  C. Rn is a v.s. over R. 
 D. Fn is a v.s. over F. (Ex. Set 3) E. Fm¿n, the set of m¿n matrices over F. 
 F. F[x] is a v.s. over F.  G. Map(S, F) where S is any set. (Ex. Set 3) 
 H. Q[ 2 ] is a v.s. over Q.  I. C is a v.s. over R. 
 J. R is a v.s. over Q.  More generally, 
 K. Any field extension E of F is a v.s. over F. 
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Proof in Exercises 
 
Definition 3.4 Let V be a v.s. over F, and let {v1, v2, . . . , vn} be a collection of vectors 
in V. Then a linear combination of the vi is a vector of the form  

 v = c1v1 + c2v2 + . . . + cnvn ,= ∑
i = 1

 
n 

civi . 

where c1, c2, . . . , cn are elements of F. 
 
Example 3.5  
A. Every vector in R3 is a linear combination of i, j, and k. 
B. Every vector in Fn is a linear combination of e1, e2, . . . , en, where ei is the n-tuple 
with 0 everywhere except for a 1 in the ith place. 
C. If the m¿n matrix A is row-equivalent to B, then, as elements of Fn, every row of B is 
a linear combination of the rows in A. 
 
Definition 3.6 A subspace of the vector space V over F is a subset W of V so that W 
inherits the structure of a vector space over F from V. (In other words, W is itself a vector 
space over F under the operations of V.) When W is a subspace of V, we shall write 
V < W. 
 

 
Examples 3.8 
 A. The zero subspace    B. Q < R < C 

C. H(n), the set of n¿n  Hermitian matrices (Aij = A—ji) is a subspace of M(n, C) 
= Cn¿n over R, but not over C. (Look at multiplication by i.) 
D. The solution set of a system of homogeneous linear equations—this follows 
from matrix algebra.: A(cX + Y) = c(AX) + AY. 
E. The intersection of an arbitrary collection of subspaces is a subspace. 

 
We obtain more examples from the following. 
 
Definition 3.9 Let V be a v.s. over F, and let {vå : å é A} be any collection of vectors. 
Then the span of {vå} is the set “vå‘ of all finite linear combinations of the vå. We say 
that{vå} spans V if “vå‘ = V. 
 

Lemma 3.3 Let V be a v.s. over F. Then, 
 (a) 0.v = 0 for all v é V. 
 (b) c.0 = 0 for all c é F. 
 (b) (-c)v = c(-v) = -(cv) for all v é V and c é F. 

Proposition 3.7 (Test for a Subspace) 
The non-empty subset W of V is a subspace iff, for all v, w é W and c é F, one has 
cv + w é F.  
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Examples 3.10 
 A. “ei‘ = Rn   B. span indep. of row operations. 
 C. Finding the span of some vectors in R4 (in class) 
 D. Finding the span of some vectors in C4 (in class) 
 E. {1, x, x2, . . . , xn, . . . } spans F[x]. 
 
Definition 3.11 The sum of the subspaces W1, W2, . . . , Wk is given by 
 W1+W2+ . . . + Wk = “{w1+w2+ . . .+wk | wi é Wi}‘. 
Thus it is the smallest subspace of V containing all the Wi.  
 
Example 3.12 The sum of any two distinct lines through the origin in R3 is a plane. 
 
Exercise Set 3 
1. Prove Lemma 3.3. 
2. (Do not hand in) Hoffman & Kunze, p. 33, #1 (verify that Fn is a v.s. over F.) 
3. Verify that Map(S, V) is a v.s. over F (see Example 3.2 G). 
4. H&K, p. 33, #3, 7. 
5. (Do not hand in) H&K, p. 39 #1, 2, 4, 6. 
6. (H&K p. 40 #9) Prove that if V = W1+W2 with W1ÚW2 = {0}, then each vector v in V 
can be written uniquely in the form v = r + s with r é W1 and s é W2.  
 
4. Bases and Dimension 
 
Definition 4.1 A set S of vectors is called linearly dependent if there exist scalars c1, c2, 
. . . , cr and vectors v1, v2, . . . , vr é S such that c1v1 + c2v2 + . . . + crvr = 0. A set of 
vectors that is not linearly dependent is called linearly independent. 
 
Notes 
1. S is linearly independent iff no vector in S can be expressed as a linear combination of 
(finitely many of) the others.  
2. Any subset of a linearly independent set is also linearly independent. 
3. Any set containing the zero vector is linearly dependent. 
4. S is linearly independent iff every finite subset of S is linearly independent. 
 

Proof Note that every row of B is a linear combination of the rows of A. Thus, if the rows 
of B were dependent, it would follow that the rows of A would also be dependent. Mutatis 
mutandis, If the rows of A are dependent, so are the rows of B. ◆  

Proposition 3.9 (Interpretation of the Span) 
If {vå} is any collection of vectors, then “vå‘ is the intersection of all subspaces W that 
contain {vå}. (In other words, it is the “smallest subspace containing the vå.”)  

Lemma 4.2 (Row Operations and Independence) 
If B is row equivalent to A, then the rows of the matrix A are independent iff the rows of 
B are independent. 
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Examples 4.3 
 A. Vectors in Fn; row reduction test.  

B. The vectors e1, e2, . . . , en é Fn.  
 
Continuing Theorem 2.8, we have the following. 
 

Proof  
(a)⇒(b) If A is invertible, then it is row equivalent to he identity, whose rows are 
independent. Thus the rows of A must be independent, by the Lemma. 
(b)⇒(c) If the rows of A are linearly independent, and B is the row reduced echelon 
equivalent of A, then the rows of B must also be independent, so there can be no rows of 
zeros. But then, since B is square and row reduced with no rows of zeros, it must be the 
identity. Since now A is equivalent to the identity, it is invertible, and hence a product of 
elementary matrices by Theorem 2.8. This also implies that it is column equivalent to the 
identity, whence its columns are also independent, by the Lemma. 
(c)⇒(a) By the same argument as the first part of (b)⇒(c), if the columns of A are 
linearly independent, it must be invertible. ◆  
 
Definition 4.5 A basis of the vector space V over F is a linearly independent generating 
set B. The v.s. V over F is called finite dimensional if it has a finite basis. Otherwise, it is 
infinite dimensional. 
 
Examples 4.6 
 A. The standard basis B = {e1, e2, . . . , en} of Fn. 
 B. With V = F[x], take B = {1, x, x2, . . . , xn, . . . }. 
 C. Fn is finite dimensional over F     
 D. F[x] is not finite dimensional over F. (Exercises) 
 E. R is infinite dimensional over Q. 
 

Proof 
(a)⇒(b) This is Definition 4.5. 
(b)⇒(c) If B were not a maximal linearly independent set, then it would be a subset of 
some other linearly independent set C. But, with c é C-B, one has c a linear combination 

Proposition 4.4 (More Criteria for Invertibility) 
Let A be an n¿n matrix. Then the following are equivalent. 
(a) A is invertible. 
(b) The rows of A are linearly independent. 
(c) The columns of A are linearly independent. 

Theorem 4.7 (Equivalent Definitions of a Basis—“Basis Theorem”) 
The following are equivalent: 
(a) B is a basis for V. 
(b) B is a linearly independent generating set. 
(c) B is a maximal linearly independent set of vectors in V. 
(d) B is a minimal generating set of V. 
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of the elements in B, since B is a generating set. But this means that C is not an 
independent set. # 
(c)⇒(d) First, we show B is a generating set, so let v é V, and s'pose that v ∉ “B‘. Then 
claim that BÆ{v} would be independent, contradicting (b). Indeed, if it is dependent, then 
there must be a linear combination equal to zero with the coefficient of v non-zero. But 
then we contradict the fact that v ∉ “B‘. Next, B must be a minimal generating set, or else 
it would not be independent. 
(d)⇒(a) We need only prove linear independence. But if it were not, then one of its 
elements would be a linear combination of the others, thus permitting us to throw it out 
and obtain a smaller generating set. # ◆ 
 
We now digress a little to prove an astounding fact. 
 
Definition 4.A A partial ordering is a relation ≤ that is reflexive, transitive and 
antisymmetric (a≤b and b≤a ⇒ a=b). A partially ordered set (poset) is a set with a 
partial ordering. If every two elements are comparable (ie., either a ≤ b, b ≤ a or both), 
then we have an ordering. 
 
Examples 4.B  
 1. Z, R  2. The set of subsets of any set S.  
 
Definition 4.C A chain in a poset is a collection of elements so that every two are 
comparable. In other words, it is an ordered subset of a poset.  
 
Example 4.D 
Look at some chains in the set of subsets of S. 
 
Definition 4.E If A is a subset of the poset P, then an upper bound of A is an element u 
é P such that u ≥ a for every a é A. A maximal element of the subset A of P is an 
element a é A (”note) such that a ≤ b, a ≠ b ⇒ b é/   A.  
 

 

Proof Let V be a vector space, take F to be the poset of linearly independent subsets of V, 
and let C be a chain of linearly independent sets. It suffices to show that C has an upper 
bound in F. But if B is the union of the subsets in C, then we claim that B is independent. 
Indeed, any finite subset of B must live in some member of C, and thus be independent. 
The claim now follows from Note 4 after Definition 4.1. ◆ 
  

Lemma 4.F (Zorn) 
If P is a partially ordered set such that every chain in P has an upper bound in P, then P 
has at least one maximal element. 

Theorem 4.G  
Every vector space has a basis. 
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Back to the main material.  
 

Proof 
(a) Start with a finite generating set and keep removing vectors that are linear 
combinations of others. Eventually, you hit a minimal set (since the original set is finite, 
so you can't go on forever…) But Theorem 4.7 says that such a minimal set must be a 
basis. 
(b) Start with the linearly indep. set A and a finite generating set G and keep adding 
vectors from G to A, not bothering with those that are already in the span of what you 
have. At each stage, you still have a linearly independent set, so you ultimately wind up 
with a spanning independent set—i.e., a basis. 
(c) If one has more than the other, express each element of the bigger basis {bi} as a 
linear combination of elements of the smaller. (If there are infinitely many, just use a 
large number of them.) The associated coefficient matrix must reduce to a matrix with at 
least one row of zeros (since it has too many rows). But this means that some non-trivial 
linear combination of rows is zero; the same linear combination of the bi's is therefore 
also zero, #. ◆  
 
Definition 4.9 The dimension of V over F is the size of any basis.  
 

Proof See Exercise Set 4 #3 and 4, as well as the Basis Theorem. ◆  
 
Exercise Set 4 
1. Prove that, if B = {b1, b2, . . . , bn} is a basis for V, and v é V, then v can be 
expressed uniquely as a linear combination c1b1 + c2b2 + . . . + cnbn  of the basis 
elements. The ci are called the coordinates of v  with respect to B. 
2. Prove that F[x] is infinite dimensional over F. 

Corollary 4.H 
R has a basis as a vector space over Q. (No one has found one yet!) 

Theorem 4.8 
Let V be finite dimensional.  
(a) Every finite generating set of V contains a basis. 
(b) Every finite linearly independent set of V can be enlarged to a basis. 
(c) Any two bases for V have the same number of elements. (In particular, every basis is 
finite!) 

Corollary 4.10 (Basis Theorem—Finite Dimensional Version) 
 The following are equivalent for any collection of vectors B in the n-dimensional space  
V. 
(a) B is a basis for V. 
(b) B is a linearly independent spanning set of V. 
(c) B is any collection of n linearly independent vectors in V. 
(d) B is any collection of n vectors that generate V. 
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3. Prove that, if V has a generating set consisting of n vectors, then any set of more than n 
vectors must be linearly dependent. 
4. Find bases for all the vector spaces in Example 3.2 A-I. (Assume S is finite in example 
G.) 
5. Let V be n-dimensional. Prove: 

(a) C is any collection of n linearly independent vectors iff C is a maximal linearly 
independent set. 
(a) C is any collection of n vectors that generate V iff C is a minimal generating set. 

 
 
5. Linear Maps 
 
Definition 5.1 Let V and W be vector spaces over F. A linear transformation, or linear 
map from V to W is a map f: V’W such that f(cv1 + v2) = cf(v1) + f(v2) for all v1, v2 é 
V and c é F. 
 
Note This is the same as requiring: 
 (a)  f(v1 + v2) = f(v1) + f(v2) for all v1, v2 é V , and 
 (b) f(cv) = cf(v) for all v é V and c é F.  
 
Examples 5.2 
 A. The zero map V’W and the identity map on V are linear. 
 B. f: R2’R2; f(x, y)= (2x+3y, 4x-y). 
 C. f: R’R is linear iff f(x) = x.f(1) = mx for all x. 

D. Let A be any m¿n matrix, and define A*: Fn’Fm by A*(v) = A·v, where v is 
written as a column vector. This is the linear map associated with a matrix. We 
look at a formula for f(v) when v = (v1, v2, . . . , vn). 
E. œ: F[x]’F; œ(a0 + a1x + . . . + anxn) = a0 + a1x+ . . . + an.  
F. Differentiation on CÏ(R). 

 
Definition 5.3 If f: V’W is a linear map, then define its kernel, or null space, and 
image, or range as follows: 
 kerf = f-1(0) = {v é V | f(v) = 0} 
 imf = f(V) = {f(v) | v é V}. 
If f is injective, it is called a monomorphism. If it is surjective, it is called an 
epimorphism. If it is bijective, it is called an isomorphism.  
 
Examples—look at all of the maps in Examples 5.2. 
 

Exercise Set 5. 
 
If V and W are finite dimensional, we can talk of the dimensions of kerf and imf: 
 

Lemma 5.4 (Kernel and Image are Subspaces) 
If f: V’W is a linear map, then kerf < V and imf < W. 
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Definition 5.5 If f: V’W is a linear map and V and W are finite dimensional, then we 
define the nullity of f to be dim(kerf), and the rank of f to be dim(Imf). 
 

Proof Let dim(V) = n, and nullity(f) = k, and let B = {b1, b2, . . . , bk} be a basis for 
kerf, so that |B| = k. By Theorem 4.8(b), B can be enlarged to a basis  
 B' =  {b1, b2, . . . , bk, c1, c2, . . . , cr} 
of V. Since it's enough to show that C = {f(c1), f(c2), . . . , f(cr)} is a basis for Im(f), since 
|C| = n-k. But certainly, anything in the image of f is in the span of C (why?) so that C 
spans Im(f). Further, C is a linearly independent set, since if a linear combination of them 
is zero, the same linear combination of the ci is in ker(f), which would contradict 
independence of the basis B' if the coefficients were not all zero.  ◆   
 
Definition 5.7 If A is an m¿n matrix, then its row rank is the dimension of the subspace 
of Fn generated by the rows of A. Similarly, its column rank is the dimension of the 
subspace of Fm generated by the columns of A. 
 
Note The row rank of a matrix A is just the rank of the associated linear map A*. Thus, if 
we define the nullity of the matrix A to be the nullity of A*, we have the following. 
 

 

Proof The column rank of A is just rank(A*), the rank of the associated linear map A*: 
Fn’Fm,. Also observe that its row rank is n - nullity(A*) (see Exercise Set 5). That they 
are equal is thus simply a restatement of Corollary 5.8. ◆   
 
Exercise Set 5 
1.  (Do not hand in) H&K, p. 73, #1-4. 
2.  (H&K, p. 73 #10) Give an example of a linear map C’C over R which is not linear 
over C. 
3. Let f: V’V be linear, and have the property that fõf = f. Show that ker(f)ÚIm(f) = 
{0}, and that V = ker(f) + Im(f). (Such a linear map f is called a projection.) 
4. Prove that a map f: X’Y (between sets) is invertible iff it is bijective. 
5. Prove that f: V’W is a monomorphism iff ker(f) = {0}.  
6. Prove Lemma 5.4. 
7. Prove that if A is any m¿n matrix, then its row rank = n - nullity(A*). 
 
 

Theorem 5.6 (Rank Plus Nullity) 
If f: V’W is a linear map and V and W are finite dimensional, then 
 rank(f) + nullity(f) = dim(V). 

Corollary 5.8 (Rank Plus Nullity for Matrices) 
If A is any m¿n matrix, then  
 rank(f) + nullity(f) = n. 

Corollary 5.9 (Row Rank = Column Rank) 
If A is any m¿n matrix, then its row rank equals its column rank. 
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6. Isomorphism 
 
Recall that the linear map f: V’W is a linear isomorphism if it is a bijective linear map. 
If there exists a linear isomorphism f: V’W, we write f: V fl W, or simply V fl W. 
 
Note f: V’W is an isomorphism iff ker(f) = {0} and Im(f) = W. (See the last exercise 
set.) 
 

Proof in class. 
 

This is really a consequence of the rank plus nullity theorem (proof in class). 
 

Proof in class. 
 
Definition 6.5 Let Hom(V, W) be the set of linear maps V’W. Define an F-vector space 
structure on Hom(V, W) by taking the sum, f+g, of f, g in Hom(V, W) to be normal 
addition of maps, and (cf)(x) = cf(x) for c é F.  
 
Recall that M(m, n) is the vector space of m¿n matrices over F. 
 

Proof That ˙ is a linear map is routine to check. That it is an isomorphism follows from 
the fact that it has an inverse denoted by f [f], described in class. That it respects 
multiplication follows (essentially) from the fact that matrix multiplication is associative. 
◆  
 

 
 

Theorem 6.1 (Linearity of the Inverse) 
If f: V’W is a linear isomorphism, then its inverse is also linear (and hence a linear 
isomorphism as well.)  

Theorem 6.3 (Invertibility of Linear Map—Finite Dimensional Case) 
If V and W are finite dimensional spaces with dimV = dimW, and if f: V’W is linear, 
then the following are equivalent. 
(a) f is invertible. 
(b) f is a monomorphism. 
(c) f is an epimorphism. 

Theorem 6.4 (Classification of Finite Dimensional Vector Spaces Over F) 
If V is any finite dimensional vector space over F, then V fl Fn, where n = dimV. 

Theorem 6.6 (Every Linear Map Fn’Fm Comes From a Matrix)  
Define ˙: M(m, n)’Hom(Fn, Fm) by ˙(A) = A*. Then ˙ is a linear isomorphism. 
Further, ˙ and ˙-1 both respect products: ˙(AB) = ˙(A)õ˙(B) and ˙-1(fõg) = ˙-1(f)˙-1(g). 
We call ˙ an algebra isomorphism. 

Corollary 6.7  
f: Fn’Fm is invertible iff [f] is  invertible. 
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Proof This follows from Theorems 6.4 and 6.6, and Exercise Set 6 #1. 
 
Definition 6.9 If f: V’W is linear, and B and C are bases of V and W respectively, then 
the matrix of f with respect to the bases B  and C  is the matrix of f where we use the 
given bases to identify V with Fn and W with Fm. We write this matrix as [f]CB (note the 
order). If V = W and B = C, then we write [f]BB as  [f]B. 
 
Note From the definition, it follows that the matrix of f is the matrix whose columns are 
the coordinates of the images of the elements of B with respect to the basis C. 
 
Examples 6.9 in class 
 

Proof in the exercise set. (See Theorem 13 on p. 90 of H&K.) 
 
Note Technically, this says that the associated matrix operation is a functor from the 
category of based vector spaces to the category of matrices. 
 
Definition 6.12 If B and C are two bases for the f.d. v.s. V, then the change-of-basis 
matrix from B  to C  is defined to be [1]BC; that is, the matrix of 1: VC’VB. (Note the 
reversal of convention.) 
 
Note The columns of this matrix are the coordinates of the vectors in C with respect to the 
old basis B.  
 
Examples some in class. 
 

 
Question Suppose f: VB’WC has matrix A and  B' and C' are new bases for  V and W 
respectively. How is [f]C'B' related to [f]cb? 
Answer Consider the following commutative diagram of based vector spaces. 

Corollary 6.8 
If V and W are finite dimensional spaces, then Hom(V, W) fl M(m, n), where m = dimW 
and n = dimV. 

Theorem 6.11 (Composition of Linear Maps) 
If f: VB’WC, and g: WC’UD are linear, then  
 [gõf]DA = [g]DC[f]CA. 
(Here, VX denotes V with the basis X. ) 

Corollary 6.12 (Inverse of Change-of-Basis) 
(a) If f: V’W is an isomorphism, then its matrix (with respect to any choice of bases) is 
invertible. 
(b) If B and C are any two bases for V, then [1]CB = [1]BC

-1. 
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  VB  ’
f

   VC 

    u 1  u1  

  VB'  ’
f

   VC' 
This shows that  
 [f]C'B' = [1]c'c-1[f]CB[1]BB'. 
Notice that it says that, of P is the change-of-basis matrix from B to B' and if Q is the 
change-of-basis matrix from C to C', then the matrix of f with respect to the new bases is 
 Q-1AP, 
where A is the original matrix of f. In particular, if B and B' are two bases of V, and if f: 
V’V is linear, then  

where P is the change-of-basis matrix from B to B'. 
 
Definition 6.13 The n¿n matrices A and B are similar if there exists an invertible n¿n 
matrix P with B = P-1AP. 
 
Exercise Set 6 
1. Prove that, if V fl V' and W fl W', then Hom(V, W) fl Hom(V',W') as algebras over 
F. 
2. Prove Theorem 6.11. 
3. H&K p. 95 #1, 2, 5 (Do not hand in) 
4. H&K, p. 95 #6 (Hand in) 
5. Prove that, if V is any finite dimensional vector space over F, then Hom(V, V) is also 
finite dimensional. What is its dimension? 
Assignment Read up about the determinant. 
 
7. Similar Matrices 
 
We desire to put matrices in their simplest possible form by a change of basis. If A is a 
diagonal square matrix with diagonal entries di, then for every i, A(ei) = diei. Thus we 
make the following definition. 
 
Definition 7.1 If f: V’V is any linear map on V, then an eigenvector is a nonzero vector 
v such that f(v) = cv for some c é F. The value c é F is called the corresponding 
eigenvalue. If A is any square matrix, then an eigenvector and corresponding eigenvalue 
of A are defined as one of A*.   
 

 [f]B' = P-1[f]BP, 

Proposition 7.1 (Finding Eigenvalues)  
Let A be an n¿n matrix. Then the following are equivalent. 
(a) c is an eigenvalue of A. 
(b) A-cI is singular. 
(c) det(A-cI) = 0. 
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Proof c is an eigenvalue of A iff (A-cI)v = 0 for some non-zero v, and the latter is true iff 
A-cI is singular, which is the same as saying det(A-cI) = 0. ◆    
 
Definition 7.2 If A is a square matrix, then the polynomial det(A-xI) is called the 
characteristic polynomial of A. 
 
Note The determinant function is multiplicative, so that similar matrices have the same 
characteristic polynomial. (Why?) 
 

Proof By induction on the number of vectors in V (which we can assume finite). If one of 
them, v (with eigenvalue c) is a linear combination of the others, then we get  
 0 = Av - cv = non-zero combination of fewer vectors, 
a contradiction.  ◆   
 
Definition 7.3 The eigenspace of the eigenvalue c é F is the set {v é V | Av = cv}.  
 
Note that it is a subspace of V. 
 

Proof First note that the null space of A - cI is the same as the null space of A' - cI of A 
is similar to A'. Since A is diagonalizable, the null space of A - cI is the same as the null 
space of D - cI, where D is diagonal. Thus its nullity k (which is also the dimension of 
the null space of c) is the number of occurrences of c on the diagonal (since the nullity of 
a diagonal matrix is the number of zeros on its diagonal). Since A and D have the same 
characteristic polynomial, and since the characteristic poly of D has (x-c) repeating k 
times, we are done.  ◆  
 
Definition 7.5 The square matrix A s diagonalizable if it is similar to a diagonal matrix. 
 
Note If A is diagonalizable, then the diagonalizing matrix P such that P-1AP is diagonal is 
the change-of-basis matrix from the standard basis to a basis of eigenvectors. This is the 
matrix whose columns are a basis of eigenvectors. 
 

Example of diagonalizing a matrix in class: A = 




5  -6  -6

 -1  4  2
 3  -6  -4

  . 

 

Proposition 7.2 (Different Eigenvalues Give Independent Vectors) 
If V is a collection of eigenvectors of A with distinct eigenvalues, then V is independent. 

Proposition 7.4 (Dimension of Eigenspace) 
If A is diagonalizable, then the dimension of the eigenspace associated with the 
eigenvalue c of A is the multiplicity of the root c in the characteristic polynomial of A. 
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Proof Exercise set 7  ◆ 
 
Exercise Set 7 
1. Prove Theorem 7.6 
2. Diagonalize the following matrices (from exercises in H&K) 

 A = 



1 0

0 0    B = 



2 3

-1 1   C = 




-9 4 4

-8 3 4
-10 8 7

  

3. Give an example of a non-diagonalizable matrix whose characteristic polynomial has 
the form given in Theorem 7.6(c). [Hint: Consider a simple upper triangular matrix.]  
4. Give an example of a matrix that is diagonalizable over C but not over R. 
5. Prove that, if A is similar to an upper triangular matrix, then the characteristic 
polynomial of A has the form 
 c(x) = (x-c1)

r1(x-c2)
r2  . . . (x-ck)

rk , 
with £ri = n. 
 
8. The Cayley-Hamilton Theorem 
 
Quick Recollections from Ring Theory. 
1. If R is a commutative ring (See H&K, p. 140), then an ideal in R is an additive 
subgroup J of R with the property that rj é J for every r é R and j é J. The ideal J  of R 
is principal if it has the form “j‘ = {jr | r é R}.  
2. If F[x] is the ring of polynomials over the field F, then F[x] is a principle ideal ring; 
that is, every ideal J in F[x] has the form “p(x)‘ for some polynomial p(x) é F[x]. Further, 
we may take p(x) to be the unique monic polynomial of minimal degree in J.  
3. If V is any vector space, then Hom(V, V) is a ring.  
 
Let T be any linear map on V, and let p(x) é F[x]. Then we define an associated map 
p(T): V’V by taking  
 p(T) = a0 + a1T + . . . + anTn 
for p(x) = a0 + a1x + . . . + anxn . 
(Here, a0 is multiplication by a0 as a map on T, and Tr is r-fold composition of T.) 
 
Definition 8.1 The polynomial p(x) é F[x] annihilates the linear map T if the linear map 
p(T) = 0.  
 
Examples 8.2 

Theorem 7.6 (Criterion for Diagonalizability) 
The following are equivalent for an n¿n matrix A. 
(a)  A is diagonalizable. 
(b) The dimensions of the eigenspaces add up to n. 
(c) The characteristic polynomial of A has the form  
 (x-c1)

d1(x-c2)
d2  . . . (x-ck)

dk  
where for each i, di is the dimension of the associated eigenspace. 
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 A. T = 1 iff p(x) = x-1 annihilates T.  
B. Rotation in R2 by a rational multiple of π is annihilated by xn-1 for some n. So 
is any permutation of basis elements. 

 C. Every linear map T on a fd vector space V is annihilated by some polynomial.  
(Proof: the vector space Hom(V, V) is finite dimensional, whence some linear 
combination of the elements 1, T, T2, . . . , Tn must be independent…) 
D. Let V = F[x] and let T: F[x]’F[x] be the shift operator (multiplication by x). 
Then T is annihilated by no polynomial in F[x]. (Why not? See the exercise set.) 

 
Note The set of elements in F[x] that annihilate T: V’V is an ideal in F[x]. (Why?) 
 
Definition 8.3 The minimal polynomial of T is the generator of the annihilator ideal of 
T. That is, it is the unique monic polynomial of minimal degree that annihilates T. 
 
It follows that every polynomial that annihilates T is a multiple of the minimal 
polynomial. 
 
Notes 
1. We can think of  matrices as linear maps, and therefore talk about the annihilating 
polynomial of a square matrix. 
2. If p(x) annihilates A, and B is similar to A, then p(x) also annihilates B. 
 

(In particular, the minimal polynomial divides the characteristic polynomial). 
Proof Let p(x) = (x-a1)(x-a2) . . . (x-am), where ai are the distinct eigenvalues of T. If 
A is diagonalizable, then p(x) certainly annihilates A, since any vector in Rn is a linear 
combination of eigenvectors, each of which is annihilated by A-aiI for some i. Further—
and it suffices to show that—p(x) is not divisible by any annihilating polynomial. Indeed, 
if q(x) is a proper divisor of p(x), then q(x) is a product of some (but not all) of the factors 
x-ai. If ai is one of the missing ones, and if v is an associated eigenvector, then q(A)(v) = 
‚j≠i(ai-aj)v ≠ 0. ◆ 
 
More generally, we have: 

Proof Let K be the commutative ring subring of M(n) consisting of all polynomials in A. 
(That is, K is the image of F[x] under evaluation at A.) Let B be the n¿n matrix with 
entries in K given by 

 B = 









A 0 … 0

0 A … 0

   

0 0 … A

  - 







a11I a21I … an1I

a12I a22I … an2I

   

a1nI 2nI … annI

  

Theorem 8.4 (Minimal Polynomial of Diagonalizable Matrix) 
If A is diagonalizable, then its minimal polynomial has the form m(x) = (x-a1)(x-a2) . . . 
(x-am), where ai are the distinct eigenvalues of A.  

Theorem 8.5 (Cayley-Hamilton) 
If c(x) is the characteristic polynomial of A, then c(A) = 0. In particular, m(x)|c(x). 
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    = 







A-a11I -a21I … -an1I

-a12I A-a22I … -an2I

   

-a1nI -a2nI … A-annI

  , 

where aij is the ij th entry of A. (Note the “negative” way it is written and the transpose of 
A.) Then det(B) = c(A), by definition of the characteristic polynomial c(x) of A! (Note 
that we are replacing numbers by matrices when talking about C(A).) Thus, we must 
prove that det(B) = 0. 
  
Now, we can compute directly that 

 B






e1

e2



 en

  = 0,  

the zero vector in (Fn)n. On the other hand, if B— = adjB is the formal adjoint of B (that is, 
the matrix whose entries are the transposes of the cofactors of the entries of B), so that 
 B—B = (detB)I 
(in K). Thus, 

  detB






e1

e2



 en

  = B—B






e1

e2



 en

  = 0. 

But this can only happen if detB(ei) = 0 for each ei. Now, detB is an n¿n matrix with 
coefficients in the underlying field F, and the only way that detB(ei) can be zero for each 
ei is if detB is the zero matrix. Thus, c(A) = det(B) = 0. ◆ 
 
Note Theorems 8.4 and 9.5, together with Exercise Set 8 #2 (below) tell us the following: 
Suppose that the characteristic polynomial c(x) of A factors as 
 c(x) = (x-c1)

d1(x-c2)
d2  . . . (x-ck)

dk . 
Then the minimal polynomial has the form 
 m(x) = (x-c1)

r1(x-c2)
r2  . . . (x-ck)

rk , 
where 1 ≤ rj ≤ dj for each j. In fact, we shall see that there is a matrix whose minimal 
polynomial is as above for any choices of rj with 1 ≤ rj ≤ dj for each j. 
 If A happens to be diagonalizable, then, by 8.4, m(x) = (x-c1)(x-c2) . . . (x-ck), 
so that each rj = 1. We shall see that the converse is also true: that is, if m(x) has the 
above form, then A is diagonalizable. 
 In general, the goal is to say what the simplest form of A is, based on its minimal 
polynomial. 
 
 
Exercise Set 8 
1. Prove the assertion in Example 8.2(D). 
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2. Prove that c(a) = 0 iff m(a) = 0 for a é F. (Here c(x) denotes the characteristic 
polynomial of A, and m(x) the minimal polynomial of A.) Deduce that m(x) and c(x) have 
the same distinct linear factors (although the powers may be different). 
3. What does Hamilton-Cayley say about the relationship between m(x) and c(x) that is 
not already said in Exercise 2? 
4. Find a 3¿3 matrix whose minimal polynomial is x3. 
5. Prove that, if A is similar to an upper triangular matrix, then A has a characteristic 
polynomial of the form 
 m(x) = (x-c1)

r1(x-c2)
r2  . . . (x-ck)

rk . 
 
 
9. Invariant Subspaces 
 
Definition 9.1 The subspace W of V is invariant under the linear endomorphism f: V’V 
(equivalently, it is A-invariant) if f(W) ¯ W. 
 
Examples 9.2 
 A. {0}, V are always invariant. 

B. f(V), f(f(V)) = f2(V), f3(V), . . . are always invariant (since f(f(V)) ¯ f(V)), etc.) 
C. kerf, kerf2, . . , kerfr  are f-invariant. 
D. The eigenspace associated with a particular eigenvector of A. 
E. The subspace of V generated by all the eigenvectors (regardless of the 
eigenvalue). 

 
Note If W is invariant under f, then there is a basis such that [f] has block form 
 

 [f] = 



B C

0 D   , 

 
where B is the matrix of f|W: W’W, the restriction of f to W. 
 

Proof Writing the matrix of f in the above block form, we see that  
 det([f]-xI) = det(B-xI)det(A-xI), 
proving the result. ◆  
 
Definition 9.3 If f: V’V is linear, v é V, and W < V, then the f-conductor of v  into W 
is 
 Sf(v;W) = {p(x) é K[x] | p(f)(v) é W}. 
 
(We drop the subscript f when the map is understood.) When W = 0, we refer to S(v;0) as 
the f-annihilator of v. 
 

Lemma 9.2 (Characteristic Polynomial of a Restriction) 
If W is an f-invariant subspace, then the characteristic polynomial of f|W divides the 
characteristic polynomial of f. 
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Thus, thinking of f as a matrix A, S(v;W) is the set of all polynomials p(x) such that p(A) 
sends v into W. 
 
Examples 9.4  
 A. Let v é W and suppose W is A-invariant. Then S(v;W) = K[x] itself.  

B. If W is A-invariant and v é V, then S(v,W) is an ideal in K[x] (since once you 
land in W, you stay there, by invariance.) 
C. If v is an eigenvector of A with eigenvalue ¬, then x-¬ é S(v,0). Thus, since 0 
is A-invariant, S(v,0) is an ideal containing x-¬. Since that ideal must be 
generated by a unique monic polynomial of least degree in S(v,0), and since x-¬ 
is a monic polynomial of least degree, it follows that S(v,0) = “x-¬‘. This is what 
the annihilators of eigenvectors look like. 
D. Let W be A-invariant. Then, since the minimal polynomial m(x) annihilates 
every v é V, m(x) must live in S(v,0)¯S(v,W). If g(x) is the unique monic 
generator of S(v,W), then m(x) must be a (polynomial) multiple of it. In other 
words: the generators of all conductors are all divisors of the minimal 
polynomial.  

 

Proof Pick any vector u é V-W. Then, since W is A-invariant, we saw in Example 
9.4(D) that its A-conductor is generated by a divisor of the minimal polynomial, so we 
can write this generator as 
 (x-c)s(x) 
for some s(x) and eigenvalue c (just look at m(x) to see why.) Thus, let v = s(A)(u). We 
need only establish that s(A)(u) ∉ W. But if is was, then s(x) would be a smaller degree 
element of the conductor than the generator. Done. ◆  
 
What this lemma is good for is the following: 
 

Proof  
(a)⇒(b) This is Exercise Set 8 #5. 

Lemma 9.5 (Technical Lemma) 
Suppose the minimal polynomial of A factors as  
 m(x) = (x-c1)

r1(x-c2)
r2  . . . (x-ck)

rk , 
and suppose that W <≠  V is A-invariant, then there exists an eigenvalue ¬ of A as well as 
a vector v é V-W, with 
 (A-¬I)v é W. 
(For instance, v could be an eigenvector with eigenvalue ¬, but not necessarily.) In other 
words, the A-conductor of v into W is generated by a monic polynomial of a particularly 
nice type. 

Theorem 9.6 (Characterization of Matrices Similar to Upper Triangular Matrices) 
The following are equivalent for the n¿n matrix A. 
(a) A is similar to an upper triangular matrix.  
(b) Its characteristic polynomial c(x) is a product of linear factors. 
(c) Its minimal polynomial m(x) is a product of linear factors. 
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(b)⇒(c) This follows from the fact that m(x)|c(x).   
(c)⇒(a) Write m(x) = (x-c1)

r1(x-c2)
r2  . . . (x-ck)

rk . We now construct the basis using 
the technical lemma. Start by applying it to W = 0. Thus, we get a v and an eigenvalue c 
with (A-cI)(v) = 0. This shows that {v} is A-invariant, and the matrix of A with respect 
to any basis extending {v} has the form 

 A = 



B C

0 D   , 
where B is diagonal (it happens to be 1¿1 and consist of c at the moment). By induction, 
we assume we have constructed in A-invariant subspace W on dimension n such that A 
can be made to have the above form, with B upper triangular, and we must thus enlarge 
W. Applying the lemma one again gives an element v with (A-cI)(v) é W, so that Av é 
“v‘ + W This shows that “v‘ + W is A-invariant, so we add v to the present basis. Since 
now A(v) has coordinate c in the (n+1, n+1) spot, and other coordinates in (j, n+1) spot 
with j ≤ n, we see that, with respect to the new basis, A still has the desired block form 
with B an (n+1)¿(n+1) upper triangular matrix, thus completing the inductive step. ◆  
 
Note By the proof, we can also say what the diagonal entries must be: the eigenvalues of 
A, of course! 

 

 
Proof  
(a)⇒(b) follows from Theorem 8.4. 
(b)⇒(c) By Theorem 9.5, A must be triangulable, and so c(x) must be a product of linear 
factors, showing the first part of the claim. Further, since m(x) = (x-c1)(x-c2) . . . (x-cr), 
where the ci are the distinct eigenvalues (see Exercise Set 8 #2), it follows that  
 0 = m(A) = (A-c1I)(A-c2I). . . (A-crI). 
(c)⇒(a) The hypothesis implies that the minimal polynomial m(x) must be (x-c1)(x-c2) . 
. . (x-cr), since it must be at least as big as that, and it does annihilate A.  
 Now, if A was not diagonalizable, then the subspace W generated by all the 
eigenvalues (which we saw was invariant) would not equal the whole of V. By the 
technical lemma, there is an eigenvalue c and a vector v not in W with Av - cv é W, and 
is thus a linear combination of eigenvectors. In other words,  
 (A-cI)v = v1 + . . . + vn   (1) 

Corollary 9.7 (Algebraically Closed Fields) 
Every square matrix over an algebraically closed field (such as C) is similar to an upper 
triangular matrix. 

Theorem 9.8 (Characterization of Diagonalizable Matrices) 
The following are equivalent for the n¿n matrix A. 
(a) A is similar to a diagonal matrix.  
(b) Its minimal polynomial m(x) is a product of distinct linear factors (x-ci). 
(c) Its characteristic polynomial c(x) is a product of linear factors with the property that, 
if (x-c1), (x-c2), . . . , (x-cr) are the distinct factors, then  
 (A-c1I)(A-c2I). . . (A-crI) = 0. 
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for some eigenvectors vi. Now let q(x) be m(x) with the factor (x-c) missing. Then, since 
m(A) = 0,we get 
 0 = m(A)(v) = (A-cI)q(A)v. 
Thus, since q(A)v is killed by A-cI, it must be an eigenvector, and hence in W.  (2) 
Now the polynomial q(x) - q(c) is divisble by x-c, so write  
 q(x) - q(c) = h(x)(x-c)   (3) 
Also,  
 q(A)v = (q(A)-q(c)I)v + q(c)v 
         =  h(A)·(A-cI)v + q(c)v  by (3) 
  = h(A)((v1 + . . . + vn) + q(c)v by (1) 
But the left-hand side is in W by (2), and so is the firs summand on the right. Thus, q(c)v 
é W. Thus either the scalar q(c) = 0 (implying that (x-c) is a root of q(x), and hence a 
double root of m(x)—a contradiction), or else v itself must be in W—another 
contradiction.  ◆ 
   
Exercise Set 9 
1. Prove that any matrix is similar to a matrix of the form 

  



B C

0 D   , 

where B is diagonal r¿r matrix, where r is the sum of the dimensions of all the 
eigenspaces. (Hint: See Example 9.2 E above.) 
2. p. 205 # 4. 
4. (Based on p. 205 # 7 &5)  

(a) Show that if A is diagonalizable iff it annihilated by some polynomial that factors 
into linear terms with distinct roots.  
(b) Deduce that every matrix A such that A2 = A is similar to a diagonal matrix. 

5.  
(a) Show that if A is any 2¿2 non-diagonal matrix with real entries, then A is 
diagonalizable iff (trA)2 > 4detA. 
(b) Show that if A is any 2¿2 non-diagonal matrix with complex entries, then A is 
diagonalizable iff A (trA)2 ≠ 4detA. 

6. (p. 206 #11) Prove or disprove: If an upper triangular matrix is similar to a diagonal 
matrix, then it is already diagonal. 
 
10.  Inner Product Spaces 
 
Note From now on, F = R or C. 
 
Definition 10.1 An inner product on the vector space V over F is a map  
 (-|-): V¿V’F 
such that, for all vectors v, w, u é V and c é F, one has: 



(v+w|u) = (v|u) + (w|u)

(v|w+u) = (v|w) + (v|u)
(cv|w) = c(v|w)
(v|cu) = c–(v|u)

  ......................... (bilinearity) 
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(v|w) = (w—|—v—).................................................. (symmetry) 
(v|v) is real and ≥ 0 and (v|v) = 0 iff v = 0 ... (positive definite) 

An inner product space is a vector space with an inner product. If F = R, we refer to a 
Euclidean space, and if F = C, to a unitary space. 
 
Note The reason for the complex conjugagtes is that we want (v|v) to come out to be real. 
(Look at what would happen to the porperties if we changed the definition of the standard 
inner product on Cn below.) 
 
Examples 10.2 
 A. The standard inner product on Rn given by (v|w) = £viwi 

B. The standard inner product on Cn given by (v|w) = £viw–i.  
C. Define an inner product on M(n;C) by (A|B) = tr(AB—), where tr is trace. (Note 
that this concides with the “standard” one if we note that (A|B) = £i,j AijB—ij.) 
D. If V = C[0, 1],  the vector space of all continuous complex-valued functions on 
[0, 1], then define 

 (f|g) = ⌡⌠

 0 

1

f(x)g—(—x—)— dx . 

E. New inner products from old: If (-|-) is an inner product on V and if f: V’V 
is linear, then we ge a new inner product, (-|-)f given by 
 (v|w)f = (f(v)|f(w)). 
F. Every unitary space inherits the structure of a Euclidean space. 

 
Definition 10.3 If (V, (-|-)) is an inner product space and v é V, define the norm of v to 
be 
 ||v|| = (v|v)1/2. 
(In the one-dimensional case, this is the usual length function.) 
 
Note ||v±w||2 = ||v||2 ± 2Re(v|w) + ||w||2 for all v, w é V. 
 

Proof  
(a) This is an immediate consequance of the positive definite property for inner products. 
(b) Immediate from definition and bilinearity (cc– = |c|2). 

(c) Use the fact that (x|x) ≥ 0, where x = v - 
(v|w)
||w||2   w (if w ≠ 0). 

(d) now follows from (c) by squaring both sides, since Re(v|w) ≤ |(v|w)|. ◆ 
 

Proposition 10.4 (Properties of the Norm) 
Let (V, (-|-)) be an inner product space and let v, w, u é V and c é F. Then  
 (a) ||v|| ≥ 0, and equals 0 iff v = 0.  (positive definite) 
 (b) ||cv|| = |c|·||v||, where |-| denotes (standard) magnitude. 
 (c) |(v|w)| ≤ ||v||·||w|| 
 (d) ||v+w|| ≤ ||v|| + ||w||   (Cauchy-Schwartz) 
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Definition10.5 The vectors v and w are orthogonal if (v|w) = 0. A set of vectors that are 
mutually orthogaonal is an orthogonal set. An orthonormal set of vectors is an 
orthogonal set each of whose vectors has norm 1. Thus, if v and w are in an orthonormal 
set, then 

 (v|w) = 

 1 if v = w;
 0 if v ≠ w.   

 
 Examples 10.6 

A. Standard o/n basis on Rn or Cn. 
B. Fourier Series: If V = C([0, 1], R) the vector space of all real-valued 
functions on [0, 1], with 

 (f|g) = ⌡⌠

 0 

1

f(x)g(x) dx , 

then {1, 2  sin 2πnx  2  cos 2πnx | n ≥ 1} is an orthonormal set.  
C. Complex Fourier Series: If V = C[0, 1],  the vector space of all continuous 
complex-valued functions on [0, 1], with 

 (f|g) = ⌡⌠

 0 

1

f(x)g—(—x—)— dx , 

then 









1

2 e2πinx  n ≥ 0   is an orthonormal set too. (This is actually obtained by 

taking the linear combinations such as 
1
2 ( )2 cos 2πnx + i 2 sin 2πnx   of the 

vectors in B. 
D. Gram-Schmidt: Every inner product space has an orthonormal basis. (We do 
the finite dimensional case, but induction—or transfinite induction—also workds 
for infinite dimensional cases.) 
 

 
Definitions 10.8 (a little different from the text) If U is an inner product space and V < U 
and u é U, then define 
 πV: U’V by πV(u) = £i(u|vi)vi é V. 
where {vi} is any orthonrmal basis of V. (Note that the sum is always finite.) The map πV 
is called orthogonal projection onto V.  
 

Proof Let {vi} and {wj} be any two o/n bases for V, and denote (x|vi)|vi (summation 
convention in force) by πV(x)1 and  (x|wi)|wi by πV(x)2.  
Claim 1: For all j, one has πV(wJ)1 = πV(wJ)2 

Indeed, write wj = wjkvk (using basis to expand wj with wjk é F. Then 
           πV(wJ)1 = (wj|vi)vi 

Proposition 10.7  
Orthogonal sets are linearly independent. 

Lemma 10.8  
This definition is independent of the choice of orthonormal basis for V. 
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   = (wjkvk|vi)vi 
   = wjk(vk|vi)vi 
   = wjk©kivi 
   = wjivk  
   = wj = πV(wJ)2. 

Claim 2: For all x é U, one has πV(x)1 = πV(x)2. 
 This is in the exercises. 
◆ 
 
Definition 10.9 Let V < U, where U is an inner product space. The orthogonal 
complement of V in U is  
 U-V = V% = {u é U | (u|v) = 0 for all v é V}. 
If V has orthonormal basis {vi}, then the orthogonal projection from U onto V is given 
by  
 πV: U’V; πV(u) = u - £i(u|vi)|vi 
 

Proof By construction, πV has the property that πV
2 = πV. ◆ 

 
Exercise Set 10 
1. Verify that the inner product in Example 10.2(E) is indeed an inner product. 
2. Show that every inner product on V is entirely determined by its “real part,” Reõ(-|-), 
where Re: C’R is given by taking the real part. 
3. Show that, for all v, w é V, 

  (v|w) = 
||v+w||2 - ||v-w||2 + i[||v+iw||2 - ||v-iw||2]

4   . 
4. If  is a complex inner product space, we can also regard it as a real inner product space 
by composing the inner product with Re: C’R. Show that this defines a one-to-one 
correspondence between unitary structures and Euclidean structures on V.   
5. Parallelogram Law Show that, for all v, w é V,  
 ||v+w||2 + ||v-w||2 = 2||v||2 + 2||w||2. 
6. Prove Claim 2 in Lemma 10.8. [Expand the basis {wj} to an orthonormal basis {wj, 
µj} for U…] 
 
11. Adjoint Operators 
 
Definition 11.1 A linear functional on the vector space V over F is a linear map f: 
V’F.  
 
Examples 11.2 
A. Let f: Rn’R be given by f(x1, x2, . . . , xn) = £iaixi, where ai é F are arbitary. 

Proposition 10.10 (Orthogonal Decomposition ) 
If U is any inner product space and V < U, then orthogonal projection decomposes U as a 
direct sum, 
 U = V « V% 
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B. If V is an inner product space and u é V, define Tu: V’F by Tu(v) = (v|u). (Why 
didn't we put v in the second slot?) 
 
Note We are not giving any more examples since, as we shall see, every example is of 
type B. In fact: 
 

Proof Choose an orthonormal basis {e1, e2, . . . , en} of V, so that 
 f(v) = f(£iviei) = £ivif(ei) = £i,j vi©i,jf(ej) =  £i,j vi(ei|ej)f(ej)  
      = £j(v|ej)f(ej) = (v|£j f(—e—j—)—ej) = (v|u), 
where 
 u =  f(—e—j—)—ej. 
Uniqueness is left to the exercises. ◆ 
 

Proof For each v é V, note that the assignment u f(u)(f(u)|v) is a linear functional, 
whence, by Theorem 11.3, there exists a unique wv é V such that (f(u)|v) = (u|wv). Define 
f*(v) = wv. We check that f* is linear in class.   
 For the second part, one has 
 (f*(u)|v) = (v|f*(u))   = (f(v)|u)   = (u|f(v)), 
showing that f** = f. ◆  
 

Proof The columns of [f]B have, as entries, the coordinates of f(ei) with respect to B. But, 
with f(ei) = £jajiej, taking (-|ej)  of both sides of the equation gives aji =  (f(ei)|ej), 
showing the first part. For the second part, the ji entry of f* is given by 
 (f*(ei)|ej) = (ei|f(ej)) 

     = (f(ej)|ei)  , 
as required. ◆  
  

Theorem 11.3 (Representability of Linear Functionals) 
Let V be a finite dimensional inner product space over F, and let f be a linear funtional. 
Then there exists u é V such that f = Tu. Further, u is the unique vector with this 
property. 

Theorem 11.4 (Existence of the Adjoint) 
Let V be a finite dimensional inner product space over F, and let f: V’V be linear. Then 
there exists a unique linear map f*: V’V such that, for all u, v é V, 
 (f(u)|v) = (u|f*(v)). 
Further, one has f** = (f*)* = f, so that f is the adjoint of f*. 

Proposition 11.6 (Matrix of a Linear Operator And Its Adjoint) 
If f: V’V is a linear operator on the inner product space V, then, if B = {ei} is an 
orthonormal basis, one has 
 [f]B = [(f(ei)|ej)] 
and 
 [f*]B = [ (f(ej)|ei)  ] = [f]BT  . 
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Definition 11.7 The n¿n matrix A is self-adjoint or Hermitian if A = A—T.  
 
If follows that every self-adjoint matrix is the matrix of a self-adjoint linear operator. 
  
Exercise Set 11 
1. Complete the proof of Theorem 11.3. 
2. Prove Theorem 9 on p. 207 without looking. 
 
12. Unitary Operators 
 
Definition 12.1 If V and W are inner product spaces, then a linear isometry f: V’W is a 
linear map that preserves the inner products. That is, (f(u) | f(v)) = (u | v) for all u, v é V.  
 
Remarks  
1. Linear isometries preserve the norm: ||f(v)|| = ||v|| for all v é V. 
2. By (1), it follows that linear isometries are injective. Thus, if V and W are finite 
dimensional, then a linear isometry V’W is a linear isomorphism. 
 
The following result states that it is sufficient to look at what happens to a basis, and 
gives us many examples. 
 

Proof  
(a)⇒(b) a fortiori  
(b)⇒(c) a fortiori 
(c)⇒(d) Let {ei} be a basis whose inage under f is orthonormal. Then, if u é V, we 
have(using summation convention) 
 ||f(u)||2 = (f(u) | f(u)) = (f(uiei) | f(ujej)) = uiuj—(f(ei) | f(ej))  
   =  uiuj—(ei | ej) = (uiei | ujej) = (u |u) = ||u||2. 
(c)⇒(d) Let u, v é V. By Exercise Set 10 #3, we can express (u | v) as a linear 
combination of ||u±v||2 and ||u±iv||2. The result now follows. ◆  
 

(a) follows since one can use orthonormal bases to construct an inverse. 

Proposition 12.2 (Criterion for a Linear Isometry) 
Let V and W be finite dimensional spaces over R or C. Then the following conditions on 
f: V’W are equivalent. 
(a) f is a linear isometry. 
(b) The image of every orthonormal basis under f is an orthonormal basis. 
(c) The image of some orthonormal basis under f is an orthonormal basis. 
(d) f preserves the norm. 

Corollary 12.3  
(a) V and W are linearly isometric iff they have the same dimension. 
(b) If V is given any orthonormal basis, then the matrix A represents a linear isometry iff 
its columns form an orthonormal basis. 
(c)  If V is given any orthonormal basis, then the matrix A represents a linear isometry iff 
its inverse is its adjoint. 
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(b) follows from condition (c) in the proposition. 
(c) follows from (b) using the definition of the inner product and matrix multipli-
cation. ◆  
 
Definition 12.4 A linear isometry f: V’V is called a unitary operator, and the matrix 
of a unitary operator with respect to an orthonomal basis is called a unitary matrix. In 
the real case, we call a unitary matrix an orthogonal matrix.  
 
Notes 
1. It follows that A is a unitary matrix iff A-1 = A—T, or, equivalently, AA—T = I, or, 
equivalently, its columns are an orthonormal basis. In the real case, this is the same as 
saying that its transpose is its inverse. 
2. Further, if f is unitary, its inverse is its adjoint (since they have the same matrix with 
respect to any orthonormal basis) so that: 
 ((f(u) | v) = (u | f*(v)) = (u | f-1(v)). 
3.  Note that any unitary matrix commutes with its adjoint (since the adjoint is the 
inverse). 
 
Definition 12.5 A square matrix that commutes with its adjoint is called normal.  
 
Examples All unitary and self-adjoint matrices. 
 

Proof  
A Special Case: A  is self-adjoint (Hermitian) We do induction on dimV. If dimV = 1, 
then the result is obvious, since we are talking 1¿1 matrices. If dimV = n+1, then any n-
dimensional A-invariant subspace will have a basis of eigenvectors, by induction. If F = 
C, then we can get such an invariant space as follows: choose an eigenvector v (there is 
always one, since we are working over C) of unit length, and then let W be the orthogonal 
complement of “v‘. Since A is self-adjoint, (Aw | v) = (A*w | v) = (w | Av) = (w | ¬v) = 
0 for all w e W, showing that W is A-invariant, as claimed. Hence we are done, since we 
can now choose an orthonormal basis of eigenvectors for W by induction. (Note that P, 
being the matrix whose columns form this orthonormal basis, is automatically unitary.) 
The General Case (which does not need the Special Case) First, we claim that A can be 
made upper triangular using a unitary matrix. That is, there is an orthonormal basis with 
respect to which A is upper triangular. We again do induction on the dimension, starting 
with the easy one-dimensional case, choose an eigenvector v of A* this time (we can, 
since we are working over C), and let W be its orthogonal complement. Then W is seen to 
be A-invariant (although “v‘ may not be). Choosing a basis that makes A|W upper 
triangular, we then add the vector v as the last vector, getting the claim.  
Claim We now claim: If A an upper triangular matrix, and A is normal, then A is 
diagonal. But, if A commutes with its adjoint, then we have 
 A*A = AA*, so that 
 AA—T = A—TA. 

Theorem 12.5 (Diagonalizability of Complex Normal Matrices) 
If A is a normal matrix, then there is a unitary matrix P such that P-1AP is diagonal. 
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Equating the 1,1 entries and the n,n entries of AA—T and A—TA shows that A must have the 
form 

 A = 









a 0 0 … 0

0 b1 … * 0
… … … … …
0 0 … bn-2 0
0 0 … 0 c

  , 

since the off diagonal terms give sums of the form xx– = ||x||2, and hence must each be 
zero. This gives the result by induction. ◆  


