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1. Matrix Algebra  
(See §§1.3 - 1.4 in text) 
 
Definition 1.1 An m¿n  matrix with entries in the reals is a rectangular array of real numbers. 
 

 A = 






a11 a12 a13 … a1n

a21 a22 a23 … a2n
… … … … …
am1 am2 am3 … amn

  

 
Examples 1.2 In class 
 
Notation 
(1) If A is any  m¿n  matrix, then the ijth  entry of A will sometimes be written as aij and 
sometimes as Aij. 
(2)  We sometimes write  [aij] or [Aij] to refer to the matrix A. Thus, for example, [aij] means “the 
matrix whose ijth entry is aij.” Thus, 
 A = [aij] = [Aij] = the matrix whose ijth entry is aij. 
(Similarly, the matrix B is written as [bij], the matrix ¶ as  [çij],  etc.) 
 
Definitions 1.2 
(i)  Two matrices are equal if they have the same dimensions and their corresponding entries 
agree (i.e., they are “the same matrix”). 
(ii) The m¿n matrix A  is square if m = n. In a square matrix, the entries a11,a22,a33,…,ann form 
the leading diagonal of A. 
(iii) A column vector is an n¿1 matric for some n; a row vector is a 1¿n matrix fro some n. 
 
We now turn to the algebra of matrices. 
 
Definitions 1.3   
(a) If A = [aij] and B = [bij] are both m¿n matrices, then their sum  is the matrix 
 A + B = [aij + bij]. 
In words, “A+B is the matrix whose ijth entry is aij + bij.” 
Thus, we obtain the ijth entry of A+B by adding the ijth entries of A and B. 
(b) The zero m¿n  matrix O is the m¿n matrix all of whose entries are 0. 
(c)  If A = [aij], then -A is the matrix [-aij]. 
(d)  More generally, if A = [aij] and if r is a real number, then rA is the matrix [raij]. This is 
called scalar multiplication by r. 
(e) If A = [aij] is any matrix, then its transpose, AT, is the matrix given by  
 (AT)ij = Aji. 
That is, AT is obtained from A by writing the rows as columns.  
(f) The matrix A is symmetric if AT = A. In other words, Aji = Aij. for every i and j. A is skew-
symmeric if AT = -A; that is, Aji = -Aij for every i and j. 
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Examples 1.4  In class 
 
Proposition 1.5 (Algebra of Addition and Scalar Multiplication) 
One has, for all real numbers r, s and m¿n matrices A, B, C, 
(a) (A+B)+C = A+(B+C)    (associativity) 
(b) A+B = B+A     (commutativity) 
(c) A+O = O +A = A    (additive identity) 
(d)  A+(-A) = (-A)+A = O   (additive inversion) 
(e) r(A+B) = rA +rB    (left distributativity) 
(f) (r+s)A = rA + sA    (right distributativity) 
(g) (rs)A = r(sA)   (associativity of scalar multiplication) 
(h) 1.A = A    (scalar multiplicative identity) 
(i) 0.A = O    (annihilation by zero) 
(j) (-1).A = -A   (no name) 
(k) (A+B)T = AT + BT  (transpose of a sum) 
(The last two can actually be deduced from ones above.) 
 
Proof We prove parts (a) and (b) in class, parts (c), (d) and (e) in the homework, and leave the 
rest as an exercise, parts (c) (d) and (e) are in the homework, while the rest are left as an 
exercise! 
 
We now consider matrix multiplication. 
 
Definition 1.6  Let  A = [aij]  be  an  m¿n  matrix, and let  B = [bij]  be an  n¿l  matrix.  Then 
their product,  A·B  is the  m¿l  matrix whose ijth  entry is given by 

(A.B)ij =  ai1b1j  +  ai2b2j + . . . +  ainbnj = ∑
k=1

n

aikbkj  Matrix Product 

Diagramatically, this entry is obtained by “dotting” the ith row of  A  with the  jth  column of  B. 
 
Examples in class 
 
Definition 1.7. If n ≥ 1, then the n¿n identity matrix In is the n¿n matrix whose ijth entry is 
given by 

 ©ij = 

1 if i = j
0 if i ≠ j  . 

(©ij is called the Kronecker Delta.) Thus,  

 In =





1 0 0 … 0

0 1 0 … 0
… … … … …
0 0 0 … 1

  

When there is no danger of confusion, we just write I and drop the subscript n. 
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Proposition 1.8 (Multiplicative Properties) 
Assuming that the sizes of the matrices are such that the operations can be performed, one has 
for all A, B, C, ¬, µ: 
(a) (AB)C = A(BC)    (associativity) 
(b) A(B+C) = AB + AC   (left distributativity) 
(c) (A+B)C = AC + BC   (right distributativity) 
(d) AI = IA = A    (additive identity) 
(e) ¬(AB) = (¬A)B = A(¬B) (associativity of scalar multiplication) 
(f) O.A = A.O = O   (actually follows from (c) and Proposition 1.5.) 
(g) (AB)T = BTAT   (transpose of a product) 
Proof We prove (a) and (d) in class, and assign some of the rest as exercises. 
(a) Let A = [aij], B = [bij], C = [cij]. Then: 
         [(AB)C]ij  = £k(AB)ikckj   (by definition of multiplication) 

   = £k ( )£l ailblk  ckj  (definition of multiplication again) 

   = £k ( )£l ailblkckj    (distributive law in R) 

   = £l ( )£k ailblkckj    (commutativity of + in R) 

   = £l ail ( )£k blkckj    (distributive law in R applied backwards) 
   = £l ail(BC)lj   (by definition of multiplication) 
   = [A(BC)]ij   (definition of multiplication again) 
 
What seems to be missing is the commutative rule: AB = BA. Unfortunately (or perhaps 
fortunately), however, it fails to hold in general. 
 
Example of failure of commutativity 
 
Examples 1.9 
(a) There exist matrices A ≠ O, B ≠ O, but with A.B ≠ O, shown in class. Such matrices A and 
B are called zero divisors. 
(b) As a result of (a), the cancellation law fails in general. Indeed, let A and B be as in (i). Then  
 A.B = O = A.O, 
but “canceling” the A would yield 
 B = O, 
which it isn't. 
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Exercise Set 1 
Anton, Set 1.3 #1–9 odd 
Set 1.4  #1(a), (c), 3, 5(a) 7(c), 15, 17 
 
Hand In (Value = 20 points) 
1. Prove that if A is any m¿n matrix with the property that AAT = O, then A = O.  
2. Prove Proposition 1.5(c), (d) and (g). 
3. Prove Proposition 1.8(c) and (e). 
4. Let  

 A = 



cos ø -sin ø

sin ø cos ø  . 

 (a) Determine a simple epxression for A2 and A3. 
 (b) Conjecture the form of the simple expression for Ak, k a positive integer. 
 (c) Prove your conjecture in (b) 
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2. Systems of Linear Equations 
  
Definition 2.1 A linear equation in the n variables x1, x2, … ,xn is an equation of the form 
 a1x1 + a2x2 + … + anxn = b, 
where the ai and b are real constants. 
 
Note: This is just an expression (i.e. to the computer majors, a string of symbols. ) For example, 
“0 = 1” is an equation, although it is not necessarily true.  
 
Examples 2.2 
  3x - y/2 = -11 is a linear equation in x and y; 
  y = x/2 + 67y - z can be rearranged to give a linear equation in x, y and z. 
  x1 + x2 + . . . + xn = 1 is a linear equation in x1, x2, . . . , xn. 

  x + 3y2 = 5,  3x + 2y - z + xz = 4, and  y = sinx are not linear. 
 
Definition 2.3 A solution of the linear equation 
a1x1 + a2x2 + . . . + anxn = b 
is a sequence of numbers (s1, s2, . . . , sn), each of which is in R, such that, if we replace each 
xi by si, the expression becomes true. The set consisting of all solutions to the equation is called 
the solution set.  
 
Examples 2.4  
(a) (1, -3) is a solution of 3x + y = 0, since 3(1) + (-3) does equal 0. 
(b) (1, 3) is not a solution of 3x + y = 0, since 3(1) + (3) does not equal 0. 
(c) The solution set of 3x + y = 0 consists of all pairs (t, -3t), t é R. We write: 
 Solution Set = {(t, -3t) : t é R}. 
(d) Find the solution set of x1 - x2 + 4x3 = 6. 
 Answer: Choosing x2 and x3 arbitrarily, x2 = å, x3 = ∫, say, we can now solve for x1, getting 
x1 = 6+å-4∫. Thus, solutions are all triples of the form (6+å-4∫, å, ∫), whence 
 Solution Set = { (6+å-4∫, å, ∫) : å, ∫ é R}. 
(e) The solution set of the linear equation 0x - 0y = 1 is empty , since there are no solutions. 
Thus, 
 Solution Set = Ø 
in this case. 
 
Definitions 2.5 A system of linear equations in the variables x1, x2, . . . , xn  is a finite set of 
linear equations in x1, x2, . . . , xn. Thus, a system of m equations in x1, x2, . . . , xn has the 
form 

 

a11x1 + a12x2 + … + a1nxn = b1

a21x1 + a22x2 + … + a2nxn = b2
 …………………

am1x1 + am2x2 + … + amnxn = bm

  



 

 8 

 
A solution to a system of equations is a sequence of numbers (s1, s2, . . . , sn) each of which is 
in R such that, if we replace each xi by si, all the expressions become true. As before, the set 
consisting of all solutions to the system of equations is called the solution set.  
 
Examples 2.6 
(a) The system 
 4x1 - x2 + 3x3 = -1; 

 3x1 + x2 + 9x3 = -4 
has a solution (1, 2, -1). However, (1, 8, 1) is not a solution, since it only satisfies the first 
equation. 
(b)  Scholium The system 
  x + y = 1 
  2x + 2y = 3 
 has no solutions. 
 
 Proof Suppose there is a solution, say (s1, s2). Then we would have: 
  s1 + s2 = 1 as a real number, and 
  2s1 + 2s2 = 3 ” ”  ”    ”. 
 But then, the second equation says that s1 + s2 = 3/2.  
 Thus we have: 
  s1 + s2 = 1 as a real number, and 
  s1 + s2 = 3/2 ” ”  ”    ”. 
 Subtracting, we get 0 = 1/2. But this is absurd!!  
 Thus our assumption (that there was a solution) was false. That is,  there is no solution. ❒ 
Remark This is called a proof by contradiction. You assume the negation of what you are trying 
to prove, and then deduce a contradiction, e.g. 0 = 1.  
(c) Geometric interpretation of systems with two unknowns, and the possible outcomes—
discussed in class. 
 
Definition 2.7 A system of equations which has at least one solution is called consistent. 
Otherwise, it is called inconsistent. Thus, for example, 2.6(a) is consistent, while 2.6(b) is 
inconsistent. 
  
Matrix Form of System of Equations 
Consider the matrix equation 
 AX = B, 
where A = [aij] is an m¿n matrix, and where X is n¿1, so that B must be m¿1. Diagramatically, 
we have 
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a11 a12 a13 … a1n

a21 a22 a23 … a2n
… … … … …
am1 am2 am3 … amn

 







x1

x2

x3
…
xn

  = 






b1

b2
…
bm

  

Since the left hand side, when multiplied out, gives a m¿1 matrix, we have the following 
equation of m¿1 matrices: 

 






a11x1 + a12x2 + … + a1nxn

a21x1 + a22x2 + … + a2nxn
 …………………

am1x1 + am2x2 + … + amnxn

  = 






b1

b2
…
bm

  

But, for these matrices to be equal, their corresponding entries must agree.  That is,  we get the 
following (rather familiar) system of m linear equations in n unknowns.    

 


a11x1 + a12x2 + … + a1nxn = b1

a21x1 + a22x2 + … + a2nxn = b2
 …………………

am1x1 + am2x2 + … + amnxn = bm

 …… (*) 

 
Thus, we can represent the system (*) by the matrix equation AX = B, where X is the column 
matrix of unknowns, and A is the coefficient matrix. Now, to solve for the matrix X, it seems 
that all we need do is multiply both sides by A-1, getting X = A-1B. But this is no simple matter! 
For starters, we don't yet have a way of getting A-1, and in fact it may not even exist. Indeed, 
inversion of matrices is quite a business, and concepts related to inversion will form the bulk of 
the rest of this course. 
 
Example in class 
 
Instead, we'll use a different approach to solve a system: 
 
Definition 2.8 If        

a11x1 + a12x2 + … + a1nxn = b1

a21x1 + a22x2 + … + a2nxn = b2
 …………………

am1x1 + am2x2 + … + amnxn = bm

  

 
is a system of linear equations, then the m¿(n+1) matrix 

 






a11 a12 a13 … a1n

a21 a22 a23 … a2n
… … … … …
am1 am2 am3 … amn

 


b1

b2
…
bm

  

is called the augmented matrix of the system. 
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Example 2.9 The augmented matrix for the system 
  2x1 -  4x2  +  x3/2  =  -1 

  x1            -  11x3   =  0 

           x2   +  x3/2   =  3/5 

 
We find solutions to systems by replacing them by ”equivalent” systems, obtained by the 
following operations. 
 Multiply an equation by a constant 
 Interchange two equations 
 Add a multiple of one equation to another. 
Notes 
1. By the laws of arithmetic, if (s1, s2, ..., sn) is a solution to a linear system, then it remains a 
solution to the system obtained by performing any of the above operations.  
2. We don't lose any information by these operations; we can always recover the original set of 
equations by doing the reverse operations—e.g. the reverse of adding twice equation 3 to 
equation 1 is subtracting twice equation 3 from equation 1.  
3. Since the operations are reversible, we can use Note (1) above backwards; a solution to a 
system of equations after an operation is also a solution to the original system. In other words, 
the solution set is not changed by operations of this type. 
 
Since a system of equations is “completely represented” by the augmented matrix, we make the 
following definition. 
 
Definition 2.10 An elementary row operation is one of the following: 
 1. Multiplication of a row by a nonzero* constant.  
 2. The interchanging of two rows. 
 3. Addition of a multiple of one row to another. 
 
They are called elementary because any kind of legitimate manipulation you do may be obtained 
by doing a sequence of elementary row operations. Thus they are the ”building blocks” for 
getting ”equivalent” matrices. 
 
By the notes before Definition 2.10, we have the following. 
 
Proposition 2.11 (Elementary Row Operations Do Not Effect Solution Set) 
Let B be obtained from the augmented matrix A of a system of linear equations by performing a 
finite sequence of elementary row operations. Then the systems of linear equations represented 
by A and B have the same solution set.. 
 
Example of use of elementary row operations to solve a system (p. 54 in Kolman) 
 
Definition 2.12. A matrix is in row-reduced echelon form if: 
 1. The first nonzero entry in each row (the leading entry) is a 1. 
                                                
* If you multiply by zero, you've lost the corresponding equation. 
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 2. Each column which contains a leading entry has zeros everywhere else. 
 3. The leading entry of any row is further to the right than those of the rows above it. 
 4. The rows consisting entirely of zeros are at the bottom. 
 
Examples 2.13 

(a) 




1 0 0 4

0 1 0 -1
0 0 1 0

    (b) 




0 1 -2 0 1

0 0 0 1 4
0 0 0 0 0

     (c) 





1 0 0 1

0 1 0 0
0 0 0 1

  is not. 

 
Examples 2.13 Solve the systems represented by (a), (b) and (c) in 2.13. 
 
Illustration of procedure to row-reduce an arbitrary matrix. 
 
Exercise Set 2 
Anton §1.1, #1, 3, 7.    

§1.2 # 1, 5, 7 (use our method for each of these), 13, 25 
Web-site For on-line pivoting go to the URL 
  www.finitemath.com →  Online Utilities →  Pivot and Gauss-Jordan Tool 
Use the web-site to do some of the above problems. 
 
Hand In (Value = 20 points) 
1 (a) Show that the system 
  x + y = 1 
      0y = 1 
 has no solutions. 
 (b) Show that the system  
  x + y = 1 
  x - y = 1 
 has a unique (i.e. exactly one) solution. [Hint: look at the way we handled the Scholium.] 
 (c) Show analytically that any system of the form 
  ax + by = c 
  ¬ax + ¬by = ¬c  (a, b, c, ¬ é R, a ≠ 0) 
 has infinitely many solutions, and write down its solution set. 
2. Give an example of a row operation e with the property that, if B is obtained from A by 
performing the operation e: 

(a) Every solution to a system represented by A, remains a solution to the system 
represented by B. 
(b) There are matrices A such that not every solution of the system represetned by B is a 
solution to the system represented by A.  

3. Prove that if a square matrix A does not row-reduce to the identity, then it row-reduces to a 
matrix with a row of zeros (meaning one or more rows of zeros). 
4. Show how the interchange of two rows can be accomplished by a sequence operations of the 
other types 1 and 3 in which we only use type 1 once and multiply by -1. 
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✰ Considerable Extra Credit If, without the help of others in the class you can prove—and 
verbally defend your proof—that the row-reduced form of every matrix is unique, 10 points will 
be added to your final examination score. Deadline: one month before finals week. 
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3. Homogeneous Systems†  
 
Just as homogeneous differential equations are important tools in solving them, so one has a 
notion of ”homogeneous” systems of linear equations. 
 
The matrix form of systems of equations makes it easy to establish many results. For example: 
 
Definition 3.1 A system of linear equations is said to be homogeneous if all the constant terms 
are zero. That is, the system takes the form 
 

a11x1 + a12x2 + … + a1nxn = 0
a21x1 + a22x2 + … + a2nxn = 0

 …………………
am1x1 + am2x2 + … + amnxn = 0

 

 Homogeneous System 
 
Recall from Section 2 that every system of linear equations can be represented in the matrix form 
 AX = B, 
where A is the coefficient matrix, X is the column matrix of unknowns, and B is a given column 
matrix. Here, we have B = 0, so a homogeneous system can be represented as follows. 

 
AX = O Homogeneous System: Matrix Form 

 
Example in class 
 
Remark (0,0, . . . ,0) is a solution of every homogeneous system, so they are always consistent. 
The zero solution is called the trivial solution, while any other solutions are called nontrivial.   
 
Lemma 3.2 (Linear Combinations of Solutions to a Homogeneous System) 
 If X1 = (s1, s2 , . . . , sn) and X2 = (t1, t2 , . . . , tn) are solutions to a homogeneous system, 
then so is åX1 + ∫X2 = (ås1+∫t1, ås2+∫t2, . . . , åsn+∫tn) for any real numbers å and ∫. 
(Compare the situation with homogeneous solutions of diff. eqns.) 
Proof in class; using matrix form. 
 
Remarks 
1. In particular, the lemma implies that the ”sum” and ”difference” of any two solutions is also a 
solution.  
2. We refer to åX1 + ∫X2 as a linear combination of X1 and X2. Similarly, åX1 + ∫X2 + çX3 is 
a linear combination of X1, X2, and X3.  
3. Lemma 3.2  says that every solution to a homogeneous system can be represented as a linear 
combination of a collection of specific solutions X1, X2, . . . , Xr. We refer to a collection of 
vectors as linearly independent if none of them is a linear combination of the others. 
                                                
† Anton’s treatment of homogenous systems is sketchy, and scattered all over the place. 
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Proposition 3.3 (Solutions of Homogeneous Systems) 
Any homogeneous system of equations either has exactly one solution (the trivial one), or else it 
has infinitely many solutions. 
Proof in class. 
 
Example 3.4 Find the solution set of the homogeneous system, and also a “basis” for the span. 
 
 2x1 + 2x2 - x3   + x5 = 0 
 -x1 - x2  + 2x3  - 3x4 + x5 = 0 
  x1 + x2 - 2x3          - x5 = 0 
          x3  +  x4  + x5  = 0 
 
The above example illustrates the following. 
 
Proposition 3.5 A homogeneous system with fewer equations than unknowns always has 
infinitely many solutions. 
 
Proof Let the given system have m equations in n unknowns, with m < n. After row reduction, 
we end up with ≤ m < n equations of the form: 
 xi - stuff = 0 
i.e., xi = -stuff. 

Thus we have no free choices for these variables. However, the remaining ones, (and there are 
remaining ones, since m < n), can now be chosen freely, so we can choose some ≠ 0, getting a 
nontrivial solution. By Proposition 3.3, we are therefore guaranteed infinitely many solutions. ◆  
 
Now we apply these results to non-homogeneous systems: 
 
Definition 3.6 Given any system of equations, the associated homogeneous system is obtained 
by replacing all the constants on the right-hand-side by zero. In other words, the homogeneous 
system associated with AX = B is AX = O. 
 
Lemma 3.7 If X1 and X2 are solutions of the (not necessarily homogeneous) system AX = B, then 
X1-X2 is a solution to the associated homogeneous system AX = O. 
 
Proof in class. ✱ 
 
Proposition 3.8 (Form of Solution to General System)  
Let P be any particular solution of the system AX = B. Then every solution to the system AX = B 
has the form  
 X = P + H,  
where H is a solution to the associated homogeneous system AX = O.  
 
Proof in class. ✱ 
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Proposition 3.9 (Solutions of General Linear Systems) 
Every system of linear equations (homogeneous or not), has either no solutions, exactly one 
solution, or infinitely many solutions. 
 
Proof in Exercise Set 3. 
 
Exercise Set 3 
§1.2 # 7, 13  (solve the associated homogeneous equations—you did the non-homogeneous ones 
in the preceding set—and verify Proposition 3.8 in each case) 
Hand In: (Value = 25 points) 
1 (a) Give an example to show that Lemma 3.2 fails in the case of non-homogeneous systems of 

equations. 
 (b) Give an example to show that Proposition 3.5 fails in the case of non-homogeneous 

systems of equations 
2. Prove Proposition 3.9. 
3. A certain nonhomogeneous system has the particular solution (-1, 0, 1), 
and the augmented matrix of the associated homogeneous system is 

 




1 0 -1 0

0 1 0 0
0 0 0 0

  

Find the solution set. 
4. Let A be an n¿n matrix . Prove that the matrix equation AX = O has a non-zero solution if and 
only if the row-reduced form of the matrix A has a row of zeros. [You might find Exercise Set 2 
#3 as well as the method of proof in Proposition 3.5 useful in your argument.] 
5. Now modify your proof of Exercise 4 to show:  
Let A be an n¿n matrix . Prove that the matrix equation AX = B has a unqiue solution for every 
column matrix B if and only if A row reduces to the identity. 
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4. Relations and Row-Equivalence 
 
We pause now to do a little abstract algebra. Let A be any set. Let A¿A be the set of all pairs 
(a, a') with a and a' in A. E.g. R¿R is the set of all ordered pairs of real numbers = the set of 
”points in the plane.” 
 
Examples of Cartesian products, esp. Z¿Z. 
 
Definition 4.1 A relation R on the set A is a specified collection R of pairs in A. If the pair (a, b) 
is in R, we write aRb, or a ~R B (or simply a ~ b), and say that a  stands in the relation R to b. 
 
Examples 4.2 
(a) Define a relation < on R by x < y if x is less than y. Then 1 < 2, -4 < 11, but 2  /<  1.  
(b) Geometric illustration of this on Z¿Z. 
(c) Define a relation D on R by x ~D y if y = 2x. Then 1 ~ 2, 2 ~ 4, 0 ~ 0, -1 ~ -2, but 2 /~ 1. 

Note that, as a set, D = {(x,y) é R2 : y = 2x}, and can be represented by the points on a straight 
line in R2. 
(d) Let M(m,n) be the set of all m¿n matrices. Define a relation ‡ on M(m,n) by A ‡ B if B can 
be obtained from A using a finite sequence of elementary row operations. Then, e.g. 

 




1 0 4

3 1 0
0 1 1

  ‡ 




1 0 0

0 1 0
0 0 1

 ,  

but  

 



1 0

0 1   ‡/   



0 0

0 1  . 
We refer to the relation ‡ as row equivalence.  
(e) Plane Geometry The relation of congruence is defined as follows: If Aand B are subsets of 
the plane, then we define A ° B to mean that B can be obtained form A using a finite sequence of 
rotations and translations. 
 
Definition 4.3 An equivalence relation on the set A is a relation ‡ on A with the following 
properties: 
 (i) If a ‡ b then b ‡ a  (symmetric) 
 (ii) For all a é A, one has a ‡ a (reflexive) 
 (iii) If a ‡ b and b ‡ c, then a ‡ c (transitive). 
 
Examples 4.4  
(a) Define the relation ° on the integers Z by n ° m if n - m is a multiple of 2 (that is. either 
both are even, or both are odd). Then: 
 Proposition ° is an equivalence relation. 
 Proof Checking the three requirements: 
 (i) If n ° m, then n-m is even. Thus m-n = -(n-m) is even also. 
  Thus, m ° n. 
 (ii) Since n-n = 0 is even, one has n ° n. 
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 (iii) If n ° m and m ° l, then n-m and m-l are both even. 
  Adding, n-l = n-m + m-l = even + even = even. 
  Thus, n ° l. 
 (Underlined parts give the definition.)❚ 
This equivalence relation is called equivalence mod 2. 
 
(b) The relation D of Example 4.2(c) is not an equivalence relation because 1 ~ 2 whereas 2  /~  1, 
so it fails to be reflexive. 
 
Proposition 4.5 Row equivalence ‡ is an equivalence relation. 
 
Proof. We first make an observation. 
 For every elementary row operation, e, there is a row operation e' which undoes the 
operation e. Indeed, if e is: 
 multiplication of a row by ¬, we take e' to be multiplication by ¬-1. 
 interchanging two rows, we take e' = e 
 replacing Rowi by Rowi + ¬Rowj, we take e' as replacing Rowi by Rowi - ¬Rowj. 
We now check the three requirements for an equivalence relation. 
(i) Symmetry: If A ‡ B, then B is obtained from A using a sequence of elementary row 
operations. Applying the corresponding inverse operations e' in reverse to B now gives us A 
back. Thus B ‡ A. 
(ii) Since A is obtained from A by multiplying Row1 by 1, we conclude that A ‡ A for every m¿n 
matrix A. 
(iii) Transitivity: If A ‡ B and B ‡ C, then this means that we can get C by first applying the 
necessary elementary row operations to A that yield B, and then applying those that yield C 
(from B). Thus A ‡ C.  ✦  
 
Theorem 4.6 Any matrix A é M(m,n) is row-equivalent to a matrix in row reduced echelon 
form. 
 
(This says that you can row-reduce any matrix in sight.) 
 
Proof  A little messy, but will be discussed in class. ✲ 
 
Exercise Set 4 
Investigate which of the three properties (Symmetry, Reflexivity, Transitivity) hold for the 
following relations on M(n,n). 
A. A~CB if A is column-equivalent to B; that is, B can be obtained from A by applying a finite 
sequence of elementary column operations (defined in the same way as row operations). 
B. A❊B if A = 2B. 
C. AÔB if A-B is upper triangular (zero below the leading diagonal). 
D. A∆B if AB = 0. 
E. A✯B if AB = BA. 
F. A❚B if B can be obtained from A by applying a single elementary row operation. 
[Answers: A.S, R, T  B. none  C. S, R  D. none  E. S, R  F. S, R] 
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Hand In: (Value = 20 points) 
1. Give an example of a relation on Z which is 
 (i) Transitive but not reflexive 
 (ii) Neither transitive nor reflexive 
 (iii) Transitive, reflexive, but not symmetric. 
2. Prove or disprove the following assertions about relations on Z: 
 (i) The relation x ~ y if x ≠ y is an equivalence relation. 
 (ii) The relation x ~ y if x - y is a multiple of 3 is an equivalence relation. 
3. Assume that ad - bc ≠ 0. Show that the matrix 

 



a b

c d   is row-equivalent to 



1 0

0 1  . 
4. Show that the following statements are equivalent for a square mattrix A:  
 (a) A is row-equivalent to the identity matrix. 
 (b) A is not row-equivalent a matrix with a row of zeros. 
[Hint for (a) ⇒ (b): Exercise Set 3 #4] 
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5. Inverses and Elementary Matrices 
 
Definition 5.1 An n¿n matrix A is said to be invertible if there is an n¿n matrix B such that AB 
= BA = I. We then call B an inverse of A. If A has no inverse, then we say that A is singular. 
 
Proposition 5.2 An invertible matrix A has exactly one inverse, (and we therefore refer to it as 
A-1, so that AA-1 = A-1A = I). 
 
Proof There are many ways to prove this. S'pose B and C were both inverses of A. Then one has 
 B = (CA)B = C(AB) = C ❉ 
 
Example 5.3 The inverse of any 2¿2 matrix is given by the formula: 





a b

c d  
-1

  = 
1

ad-bc 



d -b

-c a   Inverse of 2¿2  Matrix 

If ad-bc = 0, then in fact the inverse does not exist (the matrix is singular) as we shall find out 
later. (Compare Exercise Set 2 #3). 
 
Proposition 5.4 (Properties of Inverses)  
Assume A &B are invertible. Then: 
 (a) AB is invertible, and (AB)-1 = B-1A-1. 
 (b) A-1 is invertible, and (A-1)-1 = A. 
 (c) If ¬ ≠ 0, then ¬A is invertible, and (¬A)-1 = 

1
¬ A-1. 

 (d) If A is invertible, then so is AT, and (AT)-1 = (A-1)T. 
 (e) If r and s é Z, then ArAs = Ar+s.  
  (Defn. A-n = (A-1)n for n > 0.) 
 
Proof We do (a) in class, (b) & (c) & (d) appear in homework, and (e) will be outlined in class ❈  
 
Remark It follows from part (a), that, if A1, A2, . . . , Ar are all invertible matrices, then so is 
A1A2. . . Ar, and its inverse is Ar

-1Ar-1
-1. . . A2

-1A1
-1. 

 
Definition 5.5 An n¿n matrix E is called an elementary matrix if it can be obtained from the 
n¿n identity I using a single elementary row operation. (See Definition 2.10.) (If you need a 
fancy row operation, such as replacing row r by 6(row r) + 5(row s), it isn't elementary.)  
  
It follows that elementary matrices have the form: 

(i) The identity with one of the diagonal 1's replaced by k; 
(ii) The identity with two of its rows interchanged; Elementary Matrices 
(iii) The identity with a single off-diagonal entry k. 

 
Examples in class 
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Lemma 5.6 If the elementary matrix E is obtained from I by doing an elementary row operation 
e, and if A is any n¿n matrix, then E.A is obtained from A by doing the same operation e to A. In 
other words, if 
 E = e(I), 
then EA = e(A) 
for every matrix A (such that EA is defined). 
 
Proof Since elementary row operations are of one of three types listed on page 3, with 
corresponding elementary matrices listed above, it suffices to check these three cases. This we do 
in class. ❈ 
 
Example  of how it works in class 
 
Lemma 5.7 Every elementary matrix is invertible, and its inverse is also an elementary matrix. 
 
Proof in class. ❣   
 
Theorem 5.8 (Invertible Matrices and Systems) 
 The following statements are equivalent for an n¿n matrix A. 
 (a) A is invertible. 
 (b) For every B, the system AX = B has exactly one solution. 
 (c) AX = O has only the trivial solution. 
 (d) A is not row-equivalent to a matrix with a row of zeros. 
 (e) A is row-equivalent to the identity matrix I. 
 (f) A is a product of elementary matrices. 
 
Proof We use a “circle of implications.” 
(a)⇒(b): 
Assume A is invertible. Then A-1 exists, and it can be checked by substitution that X = A-1B is a 
solution of AX = B. we must show (b). But, given AX = B, we can multiply both sides by A-1, 
getting A-1AX = A-1B  i.e.., X = A-1B, showing that the solution X is unique. That it is a solution 
can be seen by substitution. 
 
(b)⇒(c): 
Assuming (b), Exercise set 3 #5 says that the matrix A row reduces to the identity. The same 
exercise, with B = O now tells us that AX = O must have a unique solution. Since the trivial 
solution is always a solution, that must be the unique solution. 
 
(c)⇒(d): 
This is Exercise Set 3 #4 (in negation form). 
 
(d)⇒(e): 
This is Exercsie Set 4 #4. 
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 (e)⇒(f):  
Assume that A row-reduces to I. Then there is a sequence of row operations e1, e2, . . . , ep such 
that application of e1 then e2, . . . , then ep to A results in I. Thus: 
 
 ep(ep-1( . . . (e2(e1(A))) . . . )) = I. 
 
By Lemma 5.6, if we take Ej to be the elementary matrix corresponding to ej, we now have  
 Ep(Ep-1( . . . (E2(E1·A)) . . . )) = I, 
that is,  
 Ep.Ep-1. . . . E2E1.A = I. 
Now multiply both sides by E1

-1E2
-1 . . . Ep-1

-1Ep
-1 on the left. This yields 

 A = E1
-1E2

-1 . . . Ep-1
-1Ep

-1. 
Since, by Lemma 5.7, each Ej

-1 is an elementary matrix, we have shown that A is a product of 
elementary matrices. 
 
(d)⇒(a): 
This follows from the remark following Proposition 5.4: Products of invertible matrices are 
invertible. ❷ 
 
Remark S'pose A has all its entries whole numbers, and suppose that A is invertible with A-1 also 
having integral entries. Then, just as in the theorem, it can be shown that A is a product of integer 
elementary matrices. In the context of integer matrices, the following question is the subject of 
ongoing research: Find the minimum number of elementary matrices of which A is a product. I 
believe that a colleague, David Carter, has shown that in the 2¿2 case, the answer is five. (It is 
not known for larger matrices.) 
 
Remark 5.8 With the notation in the proof of the theorem, s'pose A reduces to I, so that 
 ep(ep-1( . . . (e2(e1(A))) . . . )) = I. 
Then, as in that part of the proof, 
 Ep.Ep-1. . . . E2E1.A = I, 
so that 
 A-1 = Ep.Ep-1. . . . E2E1  
      = Ep.Ep-1. . . . E2E1I 
      = ep(ep-1( . . . (e2(e1(A))) . . . )). 
Thus, A-1 is obtained by applying the same sequence of row operations to I that were used to 
reduce A-1 to the identity. Thus we have a method for finding the inverse of any invertible 
matrix. 
 
Example in class 
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Exercise Set 5    
Anton §1.4 #7, 11, 13, 18 
Hand In (Value = 25) 
1. Prove Proposition 5.4 (b), (c), (d). 
2. Find a non-zero, non-identity 2¿2 matrix E such that E2 = E, and conclude that E is a zero 
divisor (that is, there exists a matrix F, other than O, such that EF = O). 
3. Show that the inverse of an upper triangular matrix (Aij = 0 if i > j) is upper triangular. 
4. Express the matrix  

 A = 




a b c

0 d e
0 0 f

   (a, d, f all non-zero) 

as a product of six elementary matrices. 
5. Let A be any n¿n matrix. Show that every system AX = B has a solution if and only if every 
system AX = B has a unique solution. 
 
6. Determinants 
 
Definition 6.1 A permutation ß of the n letters {1, 2, . . . , n} is a sequence (ß(1), ß(2), . . . , 
ß(n)) in which each of the letters 1, . . . , n occurs exactly once. 
 
Examples 6.2  
(a) (4, 2, 1, 3) is a permutation of {1, 2, 3, 4}, and here, 
ß(1) = 4, ß(2) = 2, ß(3) = 1, ß(4) = 3. 
(b) (1, 2, ... , n) is a permutation of {1, 2, . . . , n}, with ß(i) = i for all i. This permutation is 
called the identity permutation. 
(c) (1, 3, 3, 5, 2) is not a permutation of {1, 2, 3, 4, 5}, since 3 repeats and 4 is missing. 
 
Remarks 6.3 
(a) The number of permutations of {1, 2, . . . ,n} is n(n-1) . . . 2. 1 = n! 
(b) As the notation ß(i) in the examples suggests, we may view a permutation ß as a function that 
assigns to each member of {1,2, . . . ,n} another (possibly the same) member of {1,2, . . . ,n}. 
Further, such a function ß is a 1-1 correspondence. We write  
 
 ß: {1, 2, . . . ,n} ’ {1, 2, . . . ,n}  
 
to indicate that ß is a function from{1, 2, . . . ,n} to {1, 2, . . . ,n}. 
 
Cycle Representation and Decomposition into 2-cycles  
In class 
 
Definition 6.4 Given a permutation ß, an inversion is a pair of integers i < j such that ß(i) > 
ß(j). A permutation ß of {1,2, . . . ,n} is called an even permutation if the total number of 
inversions is even. Otherwise, ß is called an odd permutation. If ß is an even permutation, we 
write sgn(ß) = +1, else we write sgn(ß) = -1 (for ß an odd permutation). 
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Geometric Interpretation of Parity Note that if one arranges the elements of {1, 2, . . . ,n} 
down two columns and represents ß by a sequence of arrows, one gets a crossing for each 
inversion. Thus ß is odd if there is an odd number of crossings. 
 
Remark In the extra credit homework, you will show that sgn of a transposition is -1, and that 
sgn(ßõµ) = sgn(ß)sgn(µ) for every pair of permutations ß, µ.  
 
Example 6.5 
The transposition (2, 5) is odd, since there are 5 inversions; or, by the extra credit stuff, it is a 
product of a single transposition. 
The identity permutation is always even, as there are 0 inversions. 
 
Now let     

 A = 






a11 a12 a13 … a1n

a21 a22 a23 … a2n
… … … … …
an1 an2 an3 … ann

 . 

 
be any square matrix, and let ß be any permutation of {1, 2, . . . ,n}. Then define ™ß(A) to be the 
number 
 ™ß(A) = a1,ß(1) a2,ß(2) . . . an, ß(n) . 
Thus ™ß(A) is a product containing exactly one entry from each row. 
 
Example If  

 A = 




2 6 9

1 -1 3
0 -1 8

  and ß = (3, 1, 2), then  

  
 ™ß(A) = 9¿1¿(-1) = -9. 
 
Note that the number of possible expressions ™ß(A) is n!, since this is the number of possible 
permutations of n letters. 
 
Definition 6.6 We define the determinant of the n¿n matrix A by the formula:  
 
 det(A) = £ß™ß(A) sgn(ß),  
  
where the sum is taken over all permutations ß of {1, 2, . . . ,n}. (Thus there are n! terms we are 
adding together). 
 
Examples 6.7 

(a) Let A = 




2 6 9

1 -1 3
0 -1 8

 . We must now add together 9 terms: 
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ß sgn(ß) ∏ß(A)sgn(ß) 

(1, 2, 3) +1 +(2¿-1¿8) 
(1, 3, 2)  -1  -(2¿3¿-1) 
(2, 3, 1) +1 +(6¿3¿0) 
(2, 1, 3)  -1  -(6¿1¿8) 
(3, 1, 2) +1 +(9¿1¿-1) 
(3, 2, 1)  -1  -(9¿-1¿0) 

 
Note that this can be illustrated with diagonal lines (in class). 
Thus, to get det(A), we add everything in the right-hand column, getting 
 det(A) = -16 + 6 - 48 - 9 = -67 (I think). 
(b) For a general 2¿2 matrix, there are only two permutations; the even permutation (1,2) and 
the odd permutation (2,1). 
 Thus, det(A) = a11a22 - a12a21. 
 
Notation If A has rows r1, r2, . . . , rn , we shall write 
 A = [r1, r2, . . . , rn]. 

 
Lemma 6.8  
(a) If A is any square matrix containing a row of zeros, then det(A) = 0. 
(b) One has, for any i (1 ≤ i ≤ n),  
 det[r1, . . . , ri+si, . . . , rn] = det[r1, . . . , ri, . . . , rn] + det[r1, . . . , si, . . . , rn] 
(c) If two rows A are the same, then det(A) = 0. 
 
Proof 
(a) If one has a row of zeros, then each ™ß(A) is zero.   
(b) If ß é £n , then  
 ™ß[r1, . . . , ri+si, . . . , rn] = ™ß[r, . . . , ri, . . . , rn] + ™ß[r1, . . . , si, . . . , rn] 

by the distributive law in R. Summing over ß é £n now gives the result. 
(c) S'pose rows i and j are the same. If ß é £n with ß(i) = p and ß(j) = q. This means that in the 
summand of the determinant coming from ß, we have the factor AipAjq. Now let ß' be the 
composition of ß with the permutation (i, j); that is,. ß'(x) =  ßõ(i,j)(x), so that  
 ß'(i) = ßõ(i,j)(i) = ß(j) = q 
and similarly ß'(j) = p. Note that ß and ß' agree on every other element. By the extra credit 
problem, sgn(ß') = -sgn(ß), so that the perumation ß' contrubutes the same product AiqAjp = 
AipAjq (since the ith and j th rows are the same) but with opposite sign. Therefore, all the 
summands in det(A) cancel in paris, and we get 0. 
 ❇ 
 
We consider the effect of row operations on determinants. (See pp. 95-97 of Kolman.) 
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Proposition 6.9 (Effects of Row Operations on the Determinant) 
 Let A' be obtained from A by a row operation of the type e. then: 
(a) If e is multiplication of some row by ¬, then det(A') = ¬det(A). 
(b) If e is addition of µ times one row to another, then det(A') = det(A).  
(c) If e interchanges two rows, then det(A') = -det(A). 
 
 
Proof 
(a) Here, ™ß(A') = ¬™ß(A) for each ß é £n. Thus, 
 det(A') = £ß™ß(A')sgn(ß) = £ß¬™ß (A)sgn(ß) = ¬£ß™ß(A)sgn(ß) = ¬ det(A). 
(b) S'pose A' is obtained from A by replacing ri by ri + ¬rj. Then, by the lemma (part (b)), one 
has 
 det(A')  = det[r1, . . . , ri+¬rj,, . . . , rn]  
   = det[r1, . . . , ri, . . . , rn] + det[r1, . . . , ¬rj, . . . , rn]  
  = det(A) + ¬det[r1, . . . , rj, . . . , rn],  

by part (a). Note that the second term has row j appearing twice; once in the jth slot and once in 
the ith slot. Thus it vanishes by Lemma 6.8(c). Hence det(A') = det(A), as required.  
(c) Recall that any row swap can be done using a sequence of operations of type (b) combined 
with and a single multiplication of a row by -1 (see Exercise Set 2 #4). 
❇ 
 
Remarks 
1. It follows from the above that we can calculate the determinant of any (square) matrix by 
keeping track of the row operations required to reduce it. In fact, we see that we need only keep 
track of the number of times we switch two rows as well as the numbers by which we multiply 
rows. If the matrix does not reduce to I, then the determinant vanishes. 
2. It follows from part (b) of 6.9 that, if A has two identical rows, then det(A) = 0. More 
generally, it follows from the above remark that if A does not row-reduce to the identity, then 
det(A) = 0. 
 
Lemma 6.10 If A is any square matrix in row echelon form, one has det(A) = 1 if A = I, and 
det(A) = 0 otherwise.  
 
The proof is in Exercise Set 6. 
 
This, together with the preceeding result give 
 
Theorem 6.11 (Criterion for Invertibility) 
The n¿n matrix A is invertible iff det(A) ≠ 0. 
 
Example in class 
 
We now combine some of the above results in a convenient way. 
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For 1 ≤ i ≤ n, let ei be the vector (0, 0, . . . , 0, 1, 0, . . . , 0) with 1 in the ith place. 
 
Remarks 6.12 (Columns, and Expansion by Minors) 
1. Since† det(A) = det(AT), we can replace all the results about row operations with the 
corresponding results about column operations. 
 
2. Using the original formula det(A) = £ß™ß(A)sgn(ß), we can break up the sum by using those 
permutations with ß(1) = 1, then those for which ß(1) = 2, etc. This gives det(A) as a sum of n 
terms, each of which has the form 
 (-1)i+1det(M1i), 
where M1i is obtained from A by deleting row 1 and column i. The reason for the sign changes 
needs a little explanation: The first sign is +1 because deleting 1 from {1, 2, . . . , n} and then 
identifying {2, 3, . . . , n} with {1, 2, . . . , n-1} causes no sign changes in this part of the 
expansion, since no inversions are created or destroyed. (ß(1) = 1 is not an inversion, and the 
identification above does no harm.) as for the others, ß(1) = i ≠ 1 is an inversion. To see what is 
happening here, note that det(M1i) is what we would obtain from the first summand det(N11) in 
the matrix B obtained from A by cyclically permuting the rows using the cycle † = (i,i-1,. . . , 
2,1), which has parity (-1)i+1. But switching columns using a product of cycles effects every 
summand ™å(A) with the sign change. In other words, 
  i th summand  = sgn(†) ¿ first summand in det (B) 
   = sgn(†) det(N11) 
   = sgn(†) det(Mii) = (-1)i+1det(M1i) 
3. It now follows that we can expand by minors using any row or column, replacing "1" above by 
"j". 
 
Theorem 6.13 (Characterization of the Determinant) 
The determinant function is the one and only one real valued function on square matrices that 
satisfies the following three properties: 
(a) multilinearily  
      det[r1, . . . , ¬ri+µrj,, . . . , rn] = ¬det[r1, . . . , ri, . . . , rn] + µdet[r1, . . . , rj, . . . , rn] 
(b) skew-symmetry or anti-symmetry  
 If i ≠ j, then det[r1, . . . ,ri, . . . ,rj, . . . ,rn] = -det[r1, . . . ,rj, . . . ,ri, . . . ,rn]. 
(c) normalcy  
 det[e1, . . . ,en] = 1. 
 
Proof First, we check that it satisfies these properties. But (a) is Lemma 6.8(b) combined with 
Proposition 6.9(a), while (b) is Proposition 6.9(b). Finally (c) simply asserts that det(I) = 1.  
  
Next, we show uniqueness. This is essentially saying that the above properties suffice to allow 
one to compute det of any matrix, which we already know. More precisely, if ˙ was another 

                                                
† See Exercise Set 7. 



 

 27 

function which enjoyed these properties, we must show that ˙(A) = det(A) for every square 
matrix A. 
  
Thus let A be any square matrix, and let e1, e2, . . . , em be any sequence of row operations which 
reduce A. Denote the resulting reduced matrix by B. If B ≠ I, then properties (a) through (c), 
(Which hold for both det and ˙), imply that ˙(A) = det(A) = 0. (See the above Remarks 6.11.) 
Otherwise, det(A) is ±1 divided by the product of all the constants by which we multiplied rows 
with the ei, and where the sign is determined by the number of ei's which were of the row-
switching type. Noting that this follows from the properties (a) through (c), the same must be 
true for ˙(A). Thus again, ˙(A) = det(A), and we are done. ➒ 
 
In view of the theorem, we refer to det as the unique multilinear antisymmetric normal form 
on the set of matrices. 
 
Exercise Set 6 
Anton §2.2 #3, 5, 7, 9, 11 (calculate the deternimants by keeping track of the row operations)   
Hand In (Value = 15 points) 
1. By considering the three types of elementary row operations, show that, if A is any square 
matrix, and E is any elementary square matrix, then 
 det(EA) = det(E)det(A). 
2. Show, without making any assumptions such as det(AB) = det(A)det(B), that, if A is invertible, 
det(A-1) = 1/det(A). 
3. Show that skew-symmetric n¿n matrices have zero determinant if n is odd. 
 
✰ Considerable Extra Credit If, without the help of others in the class you can prove—and 
verbally defend—the following: 
 1. S'pose ß = (ß(1), ß(2), . . . , ß(n)). Let ® = ß, but with two entries (the ith and the jth, 

say) switched. Show that sgn(ß) = -sgn(®). [Hint: Determine which pairs k < l get effected 
if you switch i and j.] 

 2. Deduce that sgn(ßõµ) = sgn(ß)sgn(µ) for every pair of permutations ß, µ. 
five points will be added to your final examination. Deadline: One week after the assignment is 
due. 
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7. Multiplicative Property of the Determinant  
 
We now show another important property of the determinant function, but first we need a little 
lemma. 
 
Lemma 7.1 Let A, B é M(n,n). Then, if B fails to be invertible, so do AB and BA. 
 
Proof. We first show that AB is not invertible. S'pose to the contrary that AB was invertible. 
Then, by Proposition 5.4, so is (AB)t = BtAt. Let P be its inverse, so BtAtP = I. But, since B is 
not invertible, nor is Bt, and so there is a product of elementary matrices (and hence an invertible 
matrix) S such that SBt = I-, where I- has a row of zeros. Now SBtAtP = SI = S, an invertible 
matrix. But the left hand side is (SBt)AtP = I-(AtP), which has a row of zeros. Thus the 
invertible matrix S has a row of zeros — impossible. Thus AB cannot have been invertible. The 
proof that BA is not invertible is similar and easier, and left as an exercise (see Exercise Set 7). 
❅  
 
Note that one has, mutatis mutandis, A not invertible implies AB and BA are not invertible. 
 
Theorem 7.2 Multiplicativity of the Determinant 
 One has, for any pair A, B of n¿n matrices, 
 det(AB) = det(A)det(B). 
 
Proof We consider two cases. 
 
Case 1. A not invertible 
 In this case, det(A) = 0, (Theorem 6.11). Further, the above lemma implies that AB is not 
invertible either. Thus det(AB) = 0 too. Thus det(AB) and det(A)det(B) are equal, being both zero. 
 
Case 2. A invertible 
 In this case, A is a product, E1E2. . . .Em of elementary matrices. By repeated use of 
Exercise 1 in the above problem set, one now gets 
           det(AB) =  det(E1E2 . . . EmB) 
   =  det(E1)det(E2 . . . EmB) (applying it once) 
   =  det(E1)det(E2)det(E3. . . .EmB) (applying it again) 
   =  . . . .  
   = det(E1)det(E2). . .det(Em)det(B). 
But, by the same argument, 
              det(A)  =  det(E1E2 . . . Em) 
   =  det(E1)det(E2 . . . Em) 
   =  . . . .  
   = det(E1)det(E2). . .det(Em). 
Combining these gives 
 det(AB) = det(E1)det(E2). . .det(Em) det(B) = det(A) det(B), 
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as required.  ª 
 
Corollary 7.3 (A New Criterion for Invertibility) 
The square matrix A is invertible iff det(A) ≠ 0. If this is the case, then det(A-1) = (det(A))-1.   ✄ 
 
Proof in class (Note that we have already established this result without using the theorem.) 
 
Exercise Set 7 
Complete the proof of Lemma 7.1. 
 
Hand In (Value = 10) 
1. (a) Show that the transpose of an elementary matrix is also an elementary matrix. 
(b) Prove that det(AT) = det(A) for eny square matrix A. 
(c) Deduce that, in the statement of Theorem 5.8, the word ”row” can be replaced throughout by 
the word ”column”. 
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8. Vector Spaces 
 
Definitions 8.1 We take Rn = {(x1 , x2 , . . . ,xn ) : xi é R}, the set of all n-tuples of real 
numbers, and call it Euclidean n-space. We refer to an element (x1 , x2 , . . . ,xn ) of Rn as a 
vector.  If v  = (x1 , x2 , . . . ,xn ) é Rn, then we refer to the xi (i = 1, . . . ,n) as the coordinates 
of v. 
 
For example, Euclidean 1-space is the ”real line”, Euclidean 2-space is the ”xy-plane”, and the 
vectors are just the points themselves, Euclidean 3-space is what you have previously called ”3-
space”, (the set of triples of real numbers). 
 
Definitions 8.2 Let v = (v1 , v2 , . . . , vn )  and w = (w1 , w2 , . . . , wn )  be vectors in Rn and ¬ 
é R. Then define their sum, v + w,  to be given by 
 v + w = (v1+w1, v2+w2 , . . . , vn+wn) 
and define the scalar multiple, ¬v to be given by 
 ¬v = (¬v1 , ¬v2 , . . . , ¬vn ) . 
Finally, by -v, we mean (-1)v, and by v - w , we mean v + (-w). 
(Thus we just add coordinates to get the sum, and we multiply through by ¬ to get the scalar 
multiple.) 
 
Denote the zero vector (0,0, ... ,0) by 0. 
 
Example 8.3 In R4, one has 
(2, -1, 0, 9) + (1, 2, 5, π) = (3, 1, 5, 9+π), and 
11(1, 0, 0, 9) - (4, 1, 2, 0) = (7, -1, -1, 99),    
(1, 2, 3, 4) - (3, 4, 5, 6) = (-2, -2, -2, -2).    
   
Note that the above coincides with the usual addition of vectors in 3-space and 2-space, and with 
plain old addition of numbers in 1-space. 
 
Examples of geometric interpretation of addition & scalar multiplication—in class. 
 
Proposition 8.4 (Properties of Vectors in Rn)  
 Let u, v and w é Rn, and let ¬, µ é R Then: 
(a) u + v = v + u;    (commutativity of +) 
(b) u + (v + w) = (u + v) + w (associativity of +) 
(c) u + 0 = 0 + u = u;  (additive identity) 
(d) u + (-u) = (-u) + u = 0; (additive inversion) 
(e) ¬(u + v) = ¬u + ¬v;  (distributivity of scalar mult.) 
(f) ¬(µ(u)) = (¬.µ)u;   (associativity of scalar mult.) 
(g) (¬ + µ)v = ¬v + µv;  (distr. over scalar addition) 
(h) 1.v = v    (unitality of scalar mult.) 
(i) 0.v = 0.    (annihilation by 0). 
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Proof. This is just a special case of Proposition 1.5, as we may think of vectors in Rn as 1¿n 
matrices. ❈ 
 
These properties are actually very important, and we generalize as follows. 
 
Definition 8.5 A vector space over the reals is a set V, together with a specified rule for 
addition and multiplication by elements in R. Addition and scalar multiplication are, in addition, 
required to satisfy the following rules: If u, v, and w é V and ¬, µ é R, then one requires that: 
 (a) u + v = v + u;    (commutativity of +) 
 (b) u + (v + w) = (u + v) + w (associativity of +) 
’  (c) There exists an element 0 é V such that u + 0 = 0+ u = u for all u é V;     
       (we call 0 the additive identity ) 
’  (d) For each u é V, there exists a corresponding element -u é V with the property  
        that u + (-u) = (-u) + u = 0;  (we call -u the additive inverse of u) 
 (e) ¬(u + v) = ¬u + ¬v;  (distributivity of scalar mult.) 
 (f) ¬(µ(u)) = (¬.µ)v;   (associativity of scalar mult.) 
 (g) (¬ + µ)v = ¬v + µv;  (distr. over scalar addition) 
 (h) 1.v = v    (unitality of scalar mult.) 
 (i) 0.v = 0.    (annihilation by 0). 
 
Note Since vector addition is an operation on the vector space V, it is required that the sum v+w 
of two elements v and w of V is also an element of V. Similarly for scalar multiplication. this 
property is called closure. 
 

Closure: 
If v and w é V, then v+w é V (Closure under addition) 
If v é V and ¬ é R, then¬v é V (Closure under scalar multiplication) 

 
Examples 8.6 
(a) Rn, with the addition and scalar multiplication specified above, enjoys these properties by 
Proposition 8.4, so it is a vector space. 
 
(b) The set M(m,n) of m¿n matrices, with addition and multiplication specified in Definition 
1.3, also enjoys these properties by Proposition 1.5, so it too is a vector space. 
 
(c) Let C(a, b) denote the set of continuous real-valued functions on the interval (a,b) ¯ R. 
Thus for a function f to be in C(a, b), one requires that it be defined on (a, b) and that it be 
continuous at each point in (a, b). If f and g are in C(a, b), define f+g é C(a, b) by the rule  
 (f+g)(x) = f(x) + g(x),  
and if ¬  é R define a function ¬f by the rule  
 (¬f)(x) = ¬.f(x).    
Then one has the zero function 0 é C(a, b) given by 0(x) = 0, and also, for each f é C(a, b), the 
additive inverse -f é C(a,b) given by  
 (-f)(x) = -f(x).    
That C(a, b) with this structure is indeed a vector space is verified in Problem Set 10. 
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(d) Let C1(a, b) denote the set of differentiable real-valued functions on (a, b), so that we require 
that the first derivative of f exist everywhere on (a, b) for each f é C1(a, b). Addition and scalar 
multiplication are given as in (c).  Similarly, let Cn(a, b) denote the set of n times differentiable 
real-valued functions on (a, b), so that we require that the nth derivative exist everywhere in 
(a, b). Finally, guess what CÏ(a, b) is. 
 
(e) Let R[x] denote the set of all polynomials with real coefficients in the ”indeterminate” x. 
Thus elements of R[x] are expressions of the form 
 a0 + a1x + a2x

2 + . . . + anx
n + . . .  

with each ai é R  and all but finitely many of the ai zero.† (Thus we think of the polynomial as 
“stopping” somewhere. (eg. 4x2 + 3x - 100, x3 - x, etc.) We add polynomials by adding 
corresponding coefficients, so 
 (a0 + a1x + a2x

2 + . . . + anx
n + . . .) + (b0 + b1x + b2x

2 + . . . + bnx
n + . . .  ) =  

 (a0+b0) + (a1+b1)x + (a2+b2)x
2 + . . . + (an+bn)x

n + . . .  
(eg. (x2 + x) + (3x3 - 2x2 - 4x + 8) = 3x3 - x2 - 3x + 8. ) 
For scalar mult, we define 
 ¬(a0 + a1x + a2x

2 + . . . + anx
n + . . .) = - a0 - a1x - a2x

2 - . . . - anx
n - . . . . .  

With these rules, R[x] is a vector space (this exercise set #2). 
 
(f) Define the set of power series with real coefficients, which we denote by R[[x]], exactly as 
in (e), but with the requirement that all but finitely many of the ai be zero dropped. For example, 
an element of R[[x]] is 
 1 + x + x2 + . . . + xn + . . . .  
Addition and scalar multiplication are then defined exactly as for polynomials. 
 
(g) Let P be any plane through the origin in R3, so suppose P is the set of all points (x, y, z) such 
that ax + by + cz = 0 for some given constants a, b, c é R. Then P is a vector space; We add 
points in P by the rule 
 (x, y, z) + (x', y', z') = (x+x', y+y', z+z'), 
and scalar mult is given by 
 ¬(x, y, z) = (¬x, ¬y, ¬z). 
Note that if (x,y,z) and (x',y',z') are points in P, then so is (x+x',y+y',z+z'), since the new point 
has 
 a(x+x') + b(y+y') + c(z+z') = ax + by + cz + ax' + by' + cz' = 0 + 0 = 0. 
Similarly for scalar mult. That the axioms continue to be obeyed follows from the fact that 
addition and scalar mult. are inherited from the corresponding operations in R3, where they do 
indeed satisfy the axioms. 
(illustration in class) 
 

                                                
† This is analogous to the definition of a complex number as an “expression” of the form ai+b.  Kolman bungles it 
on page 100 where he defines a polynomial as a function. It isn't. 



 

 33 

(h) Similarly, a line through the origin in R3 consists of all points (x, y, z) satisfying the system 
of equations 
 ax + by + cz = 0 
 dx + ey + fz = 0 
for some given a, b, c, d, e, f such that (d, e, f) is not a scalar multiple of (a, b ,c) in R3. (Why?) 
Roughly speaking, a vector space is anything in which addition and scalar multiplication make 
sense and behave ”properly”. 
 
(i) The set Q of all points in the first quadrant of R2 is not a vector space, since the (usual) 
addition and scalar multiplication don't work well there. Eg.,  -1.(1.1) = (-1,-1), but this is not 
an element of Q. 
 
(j). There is a silly little vector space, called {0}, which contains a single element called 0, and 
which has the addition and scalar mult. rules: 
 0 + 0 = 0 
 ¬.0 = 0. 
It can (easily!) be checked that the rules of a vector space are satisfied by {0}. We call {0} the 
trivial vector space, and picture it as a single point *. (Actually, this vector space plays an 
important theoretical role, as we shall see below.) For example, the origin in R3 is a trivial vector 
space, consisting of the single element (0, 0, 0). 
 
Exercise Set 8  
Anton §5.1 #1–15 odd 
 
Hand In (Value = 20) 
1. Verify that C(a, b) is a vector space (cf. Example 8.6(c)). 
2. Verify that R[x] is a vector space (cf. Example 8.6(e)). 
3. Give a geometric reason answering the question in Example 8.6(h). 
4. (a) Show that axiom 8.5(i) can be deduced from the other axioms. 
  (b) Use the axioms of a vector space to show that if u is an element of the vector space V, then 

(-1)u = -u. 
 (c) Show that the additive inverse of every element in a vector space is unique. 
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9. Subspaces and Spans 
 
Definition 9.1 A subset W ¯ V of the vector space V is called a subspace of V  if the set of 
elements in W form a vector space in their own right under the operations in V. 
 
In order to check whether a given subset of V is a subspace of V, we use the folowing criterion. 
 
Proposition 9.2 (Test for a Subspace) 
A subset W of the vector space V is a subspace iff the following conditions hold. 
 (a) If u and v are in W, then so is u + v; 
 (b) If u é W, and ¬ é R then ¬u é W. 
(That is, W is a subset which is closed under addition and scalar multiplication.)  
 
Proof S'pose W ¯ V is a vector subspace. Then (a) and (b) must hold, since W, being a vector 
space, contains the sums and scalar multiples of its elements. 
 Conversely, s'pose W ¯ V satisfies (a) and (b). Then W contains the negatives of its 
elements, since, for w é W, -w = (-1).w é W by (b). Thus W contains 0 too, since 0 = w + 
(-w) é W by (a). Now all the remaining axioms hold in W since they hold in V.  ➣ 
 
Examples 9.3 
(a) Let P be any plane through the origin in R3. Then P is a subspace of R3 since: If u and v é P, 
then so are u+v and ¬u for any ¬, as we verified in Example 8.6(g). 
 
(b) A polynomial of degree ≤ n over R is a polynomial 
 a0 + a1x + a2x

2 + . . . + anx
n + . . . 

over R with an+1 = an+2 = . . . = 0, (so we can stop at the xn term). Claim: the set Rn[x] of 
polynomials of degree ≤ n over R is a vector subspace of R[x]. We check this in class. 
 
(c) The set D(n) consisting of all n¿n diagonal matrices is a subspace of the vector space M(n,n) 
of all n¿n matrices. (This exercise set). 
 
(d) Let A be an m¿n matrix and let AX = 0 be any homogeneous system of equations (in matrix 
form). Consider the set W of all solutions  
 (s1, s2 , . . . , sn),  
(previously known as the solution set). Claim: This is in fact a subspace of Rn.  
Proof We need only show that the sum of two solutions is again a solution, and that scalar 
multiples of solutions are solutions. But this is precisely what Lemma 3.2 said  ➷ 
 
In view of this we henceforth refer to the solution set as the solution space; it's been promoted. 
 
Definition 9.4 Let S = {v1, v2 , . . . , vn, . . .} be a set of any n vectors in the vector space V. 
Then the span of S  is the set “S‘ consisting of all finite linear combinations of the vi . That is,  
 “S‘ = {å1v1 + å2v2 + . . . + ånvn | ai é R, n ≥ 1}. 
We sometimes write “S‘ as “v1, v2 , . . . , vn, . . .‘. 
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Examples in class: Illustration of spans in R3. 
 
Examples 9.5 
(a) Let V = R3 and let S = {(1, 0, 0), (1, 1, 0)}. Then the span of S is {(a, b, 0) : a, b é R}.  
 
Picture in class 
 

Proof        “S‘ = {å(1, 0, 0) + ∫(1, 1, 0) : a, b é R}  by definition of the span 
   = {(a, b, 0) : a, b é R}  by definition of addition of vectors. 
 
(b) Let V = R3 and let S = {(1, 0, 0) , (1, 1, 0), (0, 0, 1)}. Then the span of S is the whole of 
R3. 
 
(c) Let V = R[x], and let S = {1, x, x2, . . . ,xn}. Then “S‘ is the subspace Rn[x]. 
 Proof Exercise Set 9. 
 
Proposition 9.6 (Spans are Subspaces) 
If S = {v1, v2 , . . . , vn} is any set of n vectors in V, then “S‘ is a subspace of V. 
 
Proof We need only show closure under (+) and (.). Thus let u and w é “S‘. This means that 
 u = å1v1 + å2v2 + . . . + ånvn 
and 
 w = ∫1v1 + ∫2v2 + . . . + ∫nvn 
for some åi and ∫i in R. Adding gives 
 u + w = (å1+∫1)v1 + (å2+∫2)v2 + . . . + (ån+∫n)vn , 
which is again in “S‘. Similarly for scalar multiples. ➟ 
 
In view of this, we also refer to “S‘ as the subspace spanned by the set S.   
 
It may happen that “S‘ is the whole of V, as was seen above. Then we refer to S as a spanning 
set of V. 
 
Proposition 9.7 (Row Operations Don't Effect the Span) 
 If A and B are two row-equivalent m¿n matrices, then the span of the rows of A = the span of 
the rows of B. 
 
Proof If e is an elementary row operation, then each row in e(A) is a linear combination of the 
rows in A. (Check each one to see why.) Thus, anything in the span of the rows of e(A) is also in 
the span of the rows of A, since it is a linear combination of linear combinations . . .  
Conversely, since A = e-1(e(A)), where e-1 is also an elementary row operation, everything in 
the span of the rows of A is also in the span of the rows of e(A). Thus, the spans of the rows of A 
and e(A) are identical.  
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Thus, doing an elementary row operation doesn't alter the span of the rows. Thus, doing a 
sequence of row operations doesn't alter the span of the rows. ➻ 
 
It follows that, to get a good idea of what the span of a bunch of vectors looks like, put 'em in a 
matrix and row reduce. 
 
Examples of spans which span R3 and a proper subspace in class 
 
We now look at how to get new subspaces from old. 
 
Definition 9.8 Let U and W be subspaces of the vector space V. Then the sum of U and W is 
given by 
 U+W = {u+w | u é U, w é W}. 
 
Examples in class; the sum of two lines; the sum of a line and a plane. 
 
Proposition 9.9 (Sums of Subspaces) 
The sum of any two subspaces of V is a subspace of V. Moreoever, it is the smallest subspace of 
V that includes U and W. That is, if X is a subspace of V that includes U and W, then X ˘ U+W. 
 
Exercise Set 9 
Anton §5.2, #1, 3, 5 
 
Hand In: (Value = 25) 
1. Verify that D(n) ¯ M(n,n) is a subspace (9.3(c)). 
2. Verify that C1(a,b) ¯ C(a,b) is a subspace, quoting some theorems from Calculus if 
necessary. 
3. Verify the claim in Example 9.5 (c). 
4.  (a) Prove that the intersection of two subspaces of V is a subspace of V. 
 (b) If W1 and W2 are subspaces of V, is the union W1ÆW2 necessarily a subspace of V? Prove, 

or give a counterexample. 
5. Two subspaces U and W are complementary subspaces of V if two conditions hold: 
 (1) U+W = V 
 (2) UÚW = {0}. 
Find a linear complement to the solution space of 2x - 3y + 4z = 0 in R3. 
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10. Linear Independence 
 
Consider the following three vectors in R3:  
 v1 = (1, -1, 0), v2 = (0, 1, 2) and v3 = (1, -3, -4).  
It just so happens that v3 = v1 - 2v3. (If you don't believe this, then check for yourself!) In other 
words, v3 is a linear combination of the other two, (i.e.. is in the span of the other two) since we 
can write 
 v3 =¬1v1 + ¬2v3, 
where here, ¬1 = 1 and ¬2 = -2. Thus in a manner of speaking, the third vector ”depends” on the 
other two. Incidentally, we can also solve for v2 and write it as a linear combination of the others. 
On the other hand, now consider the three vectors  
 w1 = (1, -1, 0), w2 = (0, 1, 2) and w3 = (1, -3, 0).  
No matter how hard we try, we cannot express one of these as a linear combination of the other 
two. (We'll see how to tell this at a glance later.) We therefore make the following definition. 
 
Preliminary Definition 10.1 S'pose V is a vector space, and v1, v2, . . . , vr are in V. If one of 
them, is in the span of the others, then we say that the vectors v1, v2 , . . . , vr are linearly 
dependent. Otherwise, we say that they are linearly independent.  
 
Thus, for example, the vectors v1,  v2 , v3 above are linearly dependent, whereas w1, w2, w3 are 
linearly independent. It turns out that this definition of linear dependence is a little cumbersome 
in practice (which is why we called it ”preliminary”) so we develop another.  
  
S'pose that the collection of vectors v1, v2 , . . . , vr is linearly dependent, so that one of them—
let us say v1— can be written as a linear combination of the others. Thus: 
 v1 = ¬2v2 + ¬3v3 + . . . + ¬rvr  
for some scalars ¬i. Rewriting gives  
 -v1 + ¬2v2 + ¬3v3 + . . . + ¬rvr = 0 .  
This implies that the equation 
 µ1v1 + µ2v2 + µ3v3 + . . . + µrvr = 0   . . . . . (*)      
has at least one non-zero solution for the µi, namely, (-1, ¬2 , ¬3 , . . . ¬r). Conversely, if 
equation (*) possesses a non-zero solution, say 
 (®1 , ®2 , . . . , ®r) 
with, say, ®i ≠ 0, then we can solve equation (*) for vi , thus getting vi as a linear combination of 
the others. 
 
Thus: linear dependence amounts to saying that the equation 
 µ1v1 + µ2v2 + µ3v3 + . . . + µrvr = 0   . . . . . (*)      
has at least one non-zero solution for the µi 
 
When this can't be done, i.e., when the vi's are independent, then equation (*) has only the zero 
solution. Thus we make the following fancy definition. 
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Fancy Definition 10.2 Let V be a vector space, and let v1, v2 , . . . , vr be in V. Then they are 
said to be linearly independent if the equation 
 µ1v1 + µ2v2 + µ3v3 + . . . + µrvr = 0   
has only the zero solution for the µi . Otherwise, they are said to be linearly dependent. 
 
This gives us the following: 
Test for Linear Independence 
1. If the vectors you are looking at happen to be in Rn, then use Stef's sure-fire method: put them 
in a matrix and row reduce (see below). 
2. To show that a given collection v1, v2 , . . . , vr of vectors is linearly independent, set  
 µ1v1 + µ2v2 + µ3v3 + . . . + µrvr = 0 
and prove that each of the µi must be 0. 
3. To show that a given collection v1, v2 , . . . , vr of vectors is linearly dependent, find scalars  
 µ1, µ2, . . . , µr, 
not all zero, such that  
 µ1v1 + µ2v2 + µ3v3 + . . . + µrvr = 0. 
 
Examples 10.3  
(a) The vectors i = (1, 0, 0), j = (0, 1, 0) and k = (0, 0, 1) are linearly independent in R3. Indeed, 
if 
 µ1(1, 0, 0) + µ2(0, 1, 0) + µ3(0, 0, 1) = (0, 0, 0) ” the zero vector, 
then multiplying through by the scalars µi and adding gives 
 (µ1, µ2, µ3) = (0, 0, 0) 
so   
 µ1 = µ2 = µ3 = 0,  
showing that equation (*) has only the zero solution. 
 
(b) The vectors v1 = (2, - 1, 0, 3), v2 = (1, 2, 5, -1) and v3 = (7, -1, 5, 8) are linearly 
dependent in R4, since 3v1 + v2 - v3 = 0. (Check !) 
 
(c) Important Example: If B is any matrix in reduced row-echelon form, then the non-zero rows 
of B are independent. Reason: The leading entry of each of these vectors is in a different slot, and 
the other vectors have zeros in that slot. So, if a linear combination of them is zero, then the 
coefficients must be zero. 
 
(d) Discussion of Wronskian in class 
 
 In order to tell easily whether a bunch of vectors in Rn is linearly independent, we use the 
following lemma. 
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Proposition 10.4 (Stef's Sure Fire Method for Checking Independence)  
The collection v1, v2 , . . . , vr of vectors in Rn is linearly independent iff the matrix A whose 
rows are the vi reduces to a matrix B with no rows of zeros.  
 
Proof If we get a row of zeros when we reduce A, then this means that one row was a 
combination of the others, so that the rows of A were linearly dependent. Conversely, if the rows 
of A are linearly dependent, then there is a non-trivial linear combination of the rows that results 
in zero, and so there is a sequence of row operations that results in a row of zeros. This finishes 
the proof, if we accept that, no matter how you reduce the matrix, you will always get a row of 
zeros. In fact, this is true because the row-reduced form of a matrix is unique. However, we have 
not proved this fact. Thus, the proof rests on the following claim:‡  

Claim: If reducing a matrix in a certain way leads to a row of zeros, then no matter how 
you reduce the matrix, you must always get a row of zeros.  
Proof of Claim: If you reduce it and obtain rows v1, v2, . . . , vn, with vn = 0, then 
 V = “v1, . . . , vn-1‘ 
is the span of the original rows. If we now find a Martian named Zort to reduce it, and 
Zort gets a matrix with rows w1, w2, . . . , wn (no rows of zeros) then 
 V = “v1, v2, . . . , vn-1‘ = “w1, w2, . . . , wn‘. 
I claim that the wi must be linearly dependent, contradicting Example 10.3 part (c) above. 
To show this, we appeal to the following result, which is Lemma 11.4 below: 
 
If {v1, v2 , . . . , vr} spans the vector space V, then any collection of more than r vectors 
in V is linearly dependent. ❄ 

 
Corollary 10.5  In Rn, any set of more than n vectors is linearly dependent. ✙  
 
Question: If we do reduction without permitting rows to get switched, then do the row(s) of 
zeros in B correspond to vectors that are linear combinations of the others? 
Answer: Not necessarily: a row swap can be done by a sequence of other row operations (how?). 
Question: So how can we find out which rows were linear combinations of the others? 
Answer: Instead of doing reduced row-echelon form, we just clear below the leading entries. 
Then, if you get a row of zeros, that row must have been a linear combination of the rows above. 
Also, completing the row reduction to reduced form cannot introduce any additional rows of 
zeros, since clearing above leading entries won't wipe out any other leading entries. 
 

                                                
‡ which was proved earlier for square matrices (see Exercise set 4 #4). 
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Exercise Set 10 
Anton §5.3 #1–15 odd 
 
Hand In (Value = 15) 
1. If V is a vector space, and S1 ¯ S2 ¯ V, show that: 
 (a) If S1 is linearly dependent, so is S2  
 (b) If S2 is linearly independent, so is S1 (“subsets of independent sets are independent”). 
2. Let v1, v2, . . . , vn, . . . be a sequence of vectors in V such that no vector in the sequence is a 
linear combination of its predecessors. Show that {v1, v2, . . . , vn, . . .} is a linearly independent 
set. 
3. Let S be a collection of linearly independent vectors, and let v be a vector not in the span of S. 
Prove that S Æ {v} is linearly independent. 
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11. Bases 
    
Definition 11.1 A basis for the vector space V is a linearly independent set of vectors whose 
span is (the whole of) V. 
 
To Show That a Set B is a Basis for V 
1. Show that B is linearly independent—see the previous section for methods. 
2. Show that B spans V; that is, let v é V be arbitrary, and show that v can be written as a linear 
combination of vectors in B. 
 
Examples 11.2  
(a) R2 has a basis B = {i, j}, where i = (1, 0) and j = (0, 1). 

(b) R3 has a basis B = {i, j, k}, where i = (1, 0, 0), j = (0, 1, 0) and k = (0, 0, 1). 

(c) R1 = R has a basis B = {i}, where i = (1). 
(d) In general, Rn has a basis B = {e1 , e2 , . . . , en}, where 
 ei= (0, 0, . . . , 1, . . . ,0) 
        ↑ 
           ith place. 
 Proof in homework. 
(e) B = {1, x, x2 , . . . , xn} is a basis for Rn[x].  
Indeed, we have already seen that B is a spanning set. To show independence, if µ0 + µ1x + . . 

. + µnx
n = 0 (the zero polynomial), this means that all the µi are zero; for two polynomials in 

Rn[x] to be the same, all their coefficients must agree. 
(f)  B = {1, x, x2 , . . . , xn, . . . } is a basis for R[x]. (Exercise Set 11.) 
 
Note on spans: Even if S is an infinite set, “S‘ by definition consists only of finite linear 
combinations ¬1vr1

 + ¬2vr2
 + . . . + ¬svrs

. 
 
(g) B = {(1, 0, 9), (-1, 2, 3), (4, 101, 22)} is a basis for R3. 
 
It seems to suggest itself that the “dimension” of V is the number of vectors in a basis. But before 
we can talk about dimension we need an auxiliary result. 
 
Lemma 11.3 (Sets Bigger than Spanning Sets are Dependent) 
If {v1, v2 , . . . , vr} spans the vector space V, then any collection of more than r vectors in V is 
linearly dependent. 
Proof 
S'pose W = {w1, w2 , . . . , wn} is any collection of vectors in V with n > r. To prove that W is 
dependent, I must produce constants µ1, µ2, . . . , µr, not all zero, such that  
 
 µ1w1 + µ2w2 + µ3w3 + . . . + µnwn = 0  (*) 
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Now, the fact that {v1, v2 , . . . , vr} spans V implies that there are constants aij such that 
 w1 = a11v1 + a12v2 + . . . + a1rvr 
 w2 = a21v1 + a22v2 + . . . + a2rvr 
  … 
 wn = an1v1 + an2v2 + . . . + anrvr 
 
Substituting these in (*) gives the big equation  
 
 µ1(a11v1 + a12v2 + . . . + a1rvr)  
 + µ2(a21v1 + a22v2 + . . . + a2rvr)  
 + . . .  
 + µn(an1v1 + an2v2 + . . . + anrvr) = 0 
that we must solve for the µi. In fact, we can do better: we can solve the system of r equations in 
n unknowns obtained from reading the equation down the columns: 
 a11v1µ1 + a21v1µ2 + . . . + an1v1µn = 0 
 a12v2µ1 + a22v2µ2 + . . . + an2v2µn = 0 
  . . . 
 a1rvrµ1 + a2rvrµ2 + . . . + anrvrµn = 0 
and obtain infinitely many non-zero solutions for the µi, proving the claim. ❄ 
 
Corollary 11.4 (Number of Elements in a Basis) 
If V has a finite basis, then any two bases of V have the same number of elements. 
Proof. Let B = {v1, v2 , . . . , vr} be a finite basis, and let C = {w1, w2 , . . . , wn,  . .} be 
any other basis for V.  
Case 1. C  is infinite Let D = {w1, w2 , . . . , wr+1} consist of any r+1 distinct elements of C. 
Then D remains linearly independent by Exercise Set 10 #1. Since B is a basis, it spans V, and 
thus, by the lemma, the larger set D cannot be linearly independent, a contradiction. 
 Case 2. C is finite 
L et C = {w1, w2 , . . . , wn}. We must show n = r. Assume this is not the case. By re-naming 
the bases if necessary, we can assume n > r. Since B is a basis, it spans V, and thus, by the 
lemma, the larger set C cannot be linearly independent, a contradiction. ❒ 
 
Definition 11.5 The dimension of the vector space V is the number of vectors in any basis B ; 
if a basis B contains infinitely many vectors, then we say that V is infinite dimensional. 
 
By the lemma (see also Exercise Set 11 #2), the notion of dimension is well-defined; that is, a 
vector space cannot have two different dimensions. 
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Theorem 11.6 (Basis Theorem). The following are equivalent for any collection of vectors B 
in the n-dimensional space V. 
 (a) B is a basis for V. 
 (b) B is a linearly independent spanning set of V. 
 (c) B is any collection of n linearly independent vectors in V. 
 (d) B is any collection of n vectors which span V. 
Proof 
(a) ⇒ (b): 
This is the definition of a basis. 
(b) ⇒ (c): 
We are given that B is linearly independent already, so we need only show that B has n 
elements. But we have shown (Corollary 11.5) that if B is any basis of an n-dimensional space 
(meaning there is some basis with n elements), then it has exactly n things in it. 
(c) ⇒ (d): 
We must show that B spans V. If B did not, choose a vector w not in the span of B. Then one 
can see that B Æ {w} is a collection of n+1 independent vectors in the n-dimensional vector 
space V. (Exercise Set 10 #2)  But this contradicts Lemma 11.4. 
(d) ⇒ (a):  
We must show that any spanning set B consisting of n vectors is a basis. We already have that it 
spans V, so we must show that it is l.i. If it was not l.i., then one of them is a combination of the 
others, so throw it away. What is left still spans V (the discarded one can be gotten from the 
others). If what's left still fails to be l.i., throw another one away. Again, what's left still spans V. 
Continue going until what's left is l.i. (Eventually, it must be, otherwise you eventually get down 
to one vector, which is automatically l.i.) What is now left is an l.i. set with fewer than n vectors 
but which still spans V. That is, we now have a basis with < n elements, contradicting 11.4. ❈ 
   
Corollary 11.7 (Test for a Basis) 
A set B of n vectors in Rn is a basis iff the matrix A whose rows are the vectors in B is 
invertible. 
 
Proof By 5.8, A is invertible iff it is row-equivalent to the identity matrix, which is true iff there 
are no rows of zeros when we reduce it. By 10.4, this is equivalent to saying that the rows are 
independent, and hence form a basis by the above theorem. ✱ 
 
Note: You can use this to test for a basis in the problems below—just take the determinant or 
row-reduce. 
 
The following result asserts that if you fix a basis B, then each vector in can be expressed using 
“coordinates” with respect to that basis. 
 
Proposition 11.8 (Coordinates With Respect to a Basis) 
Let B = {v1, . . . vn} be a basis for the vector space V. Then if v é V is any vector, one can 
write 
 v = ¬1v1 + ¬2v2 + . . . + ¬nvn 
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for some scalars ¬i. Further, the ¬i are unique for a given vector v. We therefore refer to the ¬i 
as the coordinates of v with respect to the basis B. 
 
Proof Since B is a basis, and hence spans V, it follows that every v é V is in the span of B = 
{v1, . . . vn}, and hence  
 v = ¬1v1 + ¬2v2 + . . . + ¬nvn 
for some scalars ¬i .  To show uniqueness, we suppose that 
 v = µ1v1 + µ2v2 + . . . + µnvn 
for some (possibly different) scalars µi.  Then subtracting, we get 
 0 = (¬1-µ1)v1 + (¬2-µ2)v2 + . . . + (¬n-µn)vn. 
Since the vi are linearly independent, it follows that 
 (¬1-µ1) = (¬2-µ2) = . . . = (¬n-µn) = 0 
and hence that ¬i = µi for each i = 1, . . . , n, showing uniqueness. ✮ 
 
Finally, for those infinite dimensional spoace buffs out there, we have the following: 
 
Definition 11.9 Let P be any  property, and let S be any set. A subset A ¯ S is said to be a 
maximal subset with property P if: 
 (a) A has property P; 
 (b) If B ¯ S also has property P, and B ˘ A, then B = A. 
In words, A has property P, and is properly contained in no other subset with property P.  
 
A minimal subset with property P is defined similarly. 
 
For example, by a maximal independent set in a vector space V, we mean aa maximal subset of 
V with the property that it is independent. The following theorem† applies to infinite dimensional 
spaces as well as finite dimensional ones. 
 
Theorem 11.10 (Fancy Basis Theorem). The following are equivalent for any collection of 
vectors B in the vector space V. 
 (a) B is a basis for V. 
 (b) B is a linearly independent spanning set of V. 
 (c) B is a maximal linearly independent set. 
 (d) B is a minimal spanning set. 
 
Moreover, it can be shown—but the proof is perhaps a little beyond the scope of this course— 
that: 
 
Theorem 11.11 (Existence of a Basis) 
Every vector space has a basis. 
 

                                                
† not mentioned in Kolman 
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(Of course, it is a tautology that every finite dimensional vector space has a basis...) 
 
Exercise Set 11 
Anton §5.4 #1–15 odd 
Also‡ , use Exercise Set 10 #2 to find a basis of the subspace the span of {x2+1, x2+x-1, 3x-6, 

x3+x2+1, x3} in R[x]. 
 
Hand In (Value = 25) 
1. (a) Show that B = {e1, e2, . . . ,en} in Example 11.2(d) is a basis for Rn. 
    (b) Example 11.2(f) 
2. (a) Show that, if a vector space has an infinite basis, then it has no fninite basis. 
    (b) Deduce that R[x] is infinite dimensional. 
3. (a) Let W be a subspace of the n-dimensional vector space V with the property that W is also n-
dimensional. Prove that W = V. 
   (b) Does part (a) remain true if “n-dimensional” is replaced by “infinite dimensional?” Prove 
or give a counterexample. 
4. Let V be any finite-dimensional vector space. Prove: 
    (a) Any spanning set of V contains a basis. 
    (b) Any linearly independent set in V is a contained in a basis. 
(Note These statements remain true in the infinite dimensional case.The proof of 4(b) in the 
infinite dimensional case requires Zorn's Lemma. Ask for a discussion...) 
5. Let A be an invertible n¿n matrix, and let B = {v1, . . . , vn} be a basis for an r-dimensional 
subspace of Rn. Show that {Av1, . . . Avn} is also a basis for for an r-dimensional subspace of 
Rn. 
 

                                                
‡ This is from Fraleigh, Linear Algebra, 3rd Edition, p. 203. 
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12. Linear Transformations 
 
If V and W are two vector spaces (possibly even the same vector space), then if f: is a function 
whose domain is V and whose codomain is W, we say that f is a mapping from V to W, and 
write 
 f: V ’ W. 
 
Examples 12.1  
(a) Define f: R2 ’ R3 by f(x,y) = (x2, xy, x+y). Note here that the Image (i.e.. range) of f is not 
the whole of R3. It doesn't matter. All this means is that f assigns to each member of R2 a 
member of R3. 
(b) If V is any vector space, define 1: V ’ V by 1(v) = v. The map 1  is called the identity map 
on V. (For example f: R ’ R given by f(x) = x is the identity map on the vector space R.) 
(c) An extremely important example.  If A is any m¿n matrix, then A determines an associated 
map 

  A ^ : Rn’ Rm 
as follows. If (x1, x2 , . . . , xn) é Rn, define  

�   A ^ (x1, x2 , . . . , xn) = [A·(x1, x2 , . . . , xn)
t]t 

where · is matrix multiplication. For example, if A is the 2¿2 matrix 

 A = 



1 2

1 -3  , 

then  A ^ (x,y) = (x+2y, x-3y). 
(d) Define œ: R[x] ’ R by  
 œ(a0 + a1x + . . . + anxn + . . . ) = a0 + a1 + . . . + an + . . .  
(Since all but finitely many of the ai' s are zero, the sum on the right is really a finite sum, so 
there is no problem with convergence, etc.) For example, œ(x2 + 3x7 - x666) = 1+3-1 = 3. This 
function œ is very important in abstract algebra, and is called the augmentation map.  
 
Definition 12.2 Let V and W be vector spaces. Then a linear transformation (or linear map) 
f: V ’ W  is a function f: V ’ W which satisfies the following rules: 
 (i) f(v1+v2) = f(v1) + f(v2) 
 (ii) f(¬v) = ¬f(v) 
for all v, v1, v2 in V and ¬ in R. 
 
Note that in (i) the RHS is addition in W, while the LHS is addition in V. We thus speak of f as 
preserving the vector space structure.   
 
Examples 12.3 
(a) Let f: R2 ’ R3 be given by f(x, y) = (x+2y, x, x-y). Then f is linear. Indeed, 
 (i) f((x, y) + (x', y')) = f(x+x', y+y') = (x+x'+2(y+y'), x+x', x+x'-(y+y')) 
         = (x+2y, x, x-y) + (x'+2y', x', x'-y') 
         = f(x,y) + f(x',y'), 
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and      (ii) f(¬(x, y))  = f(¬x, ¬y) = (¬x+2¬y, ¬x, ¬x-¬y) 
   = ¬(x+2y, x, x-y) 
    = ¬f(x, y) 
for all (x,y) and (x',y') in R2 and ¬ é R. 

(b) Let A be any m¿n matrix, and let  A ^ : Rn ’ Rm be the associated map as in Example 

12.1(c). Then  A ^  is linear. Indeed, if v and w are in Rn, then 

        A ^ (v+w) = [A.(v+w)t]t = [A.(vt+wt)]t = [A.vt + A.wt]t  

  = [A.vt ]t + [A.wt]t =  A ^ (v) +  A ^ (w) , 
and 
   A ^ (¬v) = [A.¬vt ]t = ¬[Avt ]t = ¬ A ^ (v) . 
We shall see later that, essentially, all linear maps between finite dimensional spaces look like 
this.  
(c) As a special case of the above example, let A be the matrix 

 



cosø -sinø

sinø cosø   
(d) The identity map 1: V ’ V described in Examples 12.1 is linear. (Homework). Note: If V = 

Rn, then this map is of the form  I ^ , where I is the n¿n identity matrix. 
(e) The zero map 0: V ’ V given by 0(v) = 0, (the zero vector), for any v é V, is linear. 

(Homework). If V = Rn, then this map is of the form  O ^ , where O is the n¿n zero matrix. 
(f) The dilation maps T: V ’ V given by T(v) = kv for some scalar k. If V = Rn, then these 

maps are of the form  A ^ , where A = kI. 
(Illustrations of the actions of these on figures in  Rn) 
(g) Let V be any n-dimensional vector space and let B and B' be any two bases for V; B = {v1, 
. . . vn}, C = {w1, . . . wn}. We define the change-of-basis transformation, TB,C : V ’ V as 
follows. If v é V, then one can write v = ¬1v1 + ¬2v2 + . . . + ¬nvn for unique scalars ¬i, by 
above results. We now define 
 TB,C (¬1v1 + ¬2v2 + . . . + ¬nvn ) = ¬1w1 + ¬2w2 + . . . + ¬nwn. 
That TB,C is linear is in the homework. 
(h) Let D: C1[a, b] ’ C[a, b] be the map given by D(f) = f', (the derivative of f). Then D is a 
linear transformation. (By convention, C1[a,b] is the vector space of continuously differentiable 
maps on [a, b]. That is, the derivative exists and is continuous on the interval [a, b].) Thus 
“differentiation is a linear operation.” 

(i) Define J: C[0,1] ’ R by J(f) = ⌡⌠
0

1
f(x) dx . Then J is linear. (Exercise). For example, if f is 

specified by f(x) = sin (πx), then  

 J(f) = ⌡⌠

0

1
sin πx dx = 2/π. 
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Proposition 12.4 (Preservation of subtraction and 0)  
If f: V ’ W is linear, then: 
 (i) f(v1 - v2) = f(v1) - f(v2) for all v1 & v2 é V. 
 (ii) f(0) = 0 and f(-v) = -f(v) for all v é V. 
  
 
Proof For (i), 
     f(v1 - v2) =    f(v1 + (-1)v2)  =  f(v1) + f((-1)v2)  =  f(v1) + (-1)f(v2)  = f(v1) + f(v2) 
         ↑         ↑   ↑            ↑ 
       defn of -v    1st property for lin. maps      2nd property         defn of -f(v2) 
For (ii) First apply (i) with v1 = v2 = 0 to get first assertion, then apply first assertion and (i) 
with v1 = 0 and v2 = v to get second assertion. ➶ 
 
Note This should remind one of corresponding rules for derivatives and integration. In fact, these 
rules hold for differentiation and integration precisely because—as we have seen above—they 
are linear transformations. 
 
Definitions 12.5 If f: V ’ W is a linear map, then the kernel (or null space) of f is the set of 
vectors 
 ker f = {v é V : f(v) = 0}. 
 
On the other hand, the image of f is the set of vectors 
 
 Im f = {f(v) : v é V}. 
 
(This is just the “range” of f in the usual sense.) 
 
Examples 12.6 
(a) Let f: V ’ W be the zero map. Since f annihilates everything in V, it follows that ker f = V 
itself. The image of f is zero. 

(b) Let A be an m¿n matrix, and let f be the linear map  A ^ : Rn ’ Rm. Then  A ^ (v) = 0 iff A.v = 

0. In other words, v is a solution to the homogeneous equation AX = O. Thus, ker A ^  is the 
solution space of AX = O. Turning to the image of  A ^ , it consists of all w such that the matrix 
equation AX = w has a solution (i.e.. is consistent). We'll see later that this in fact corresponds to 
the subspace of Rm generated by the columns of A.  
(c) Let f: C1(R) ’ C0(R) be differentiation, then ker f is the subspace of C1(R) consisting of 
the constant maps. The Image of f is the whole of C0(R), since every continuous function has an 
antiderivative. 
 
Theorem 12.7 (Kernel and Image are Subspaces)  
If f: V ’ W is linear, then ker f and Im f are subspaces of V and W respectively. 
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Proof Checking the two conditions for ker f,  
   x &y é ker f ⇒ f(x) = 0 & f(y) = 0 
   ⇒ f(x+y) = f(x) + f(y) = 0 + 0 = 0 
   ⇒ x+y é ker f. 
 x é ker f and ¬ é R ⇒ f(¬x) = ¬f(x) = ¬.0 = 0 
   ⇒ ¬x é ker f. 
 
 Checking the two conditions for Im f,  
  v & w é Im f ⇒ v = f(x)  & w = f(y) for some x and y in V 
   ⇒ v + w = f(x) + f(y) = f(x+y) 
   ⇒ v+w é Im f. 
 v é Im  f and ¬ é R ⇒ v = f(x), so ¬v = ¬f(x) = f(¬x) 
   ⇒ ¬v é Im f.   ➣ 
 
Exercise Set 12 
 
Hand In  (Value = 30) 
1. Show that the augmentation map œ: R[x] ’ R defined in Examples 12.1 is linear. 
2. Show that the identity and zero maps on any vector space V are linear. 
3. Show that the change-of-basis map TB,C is linear for any vector space V ad bases B and C. 
4. If f: V ’ W and g: W ’ U are maps, one has their composite, gõf: V ’ U, given by gõf(v) 
= g(f(v)) for each v é V Show that, if f and g are linear, then so is gõf. 
5. Say that a function f: X ’ Y is injective (“one-to-one”) f(x) ≠ f(y) unless x = y; in other 
words,  
 f(x) = f(y) ⇒ x = y. 

(a) Show that the function f: R ’ R given by f(x) = 4x+5 is injective, whereas the function 
g: R ’ R given by g(x) = x2+1 is not.  

(b) Convince yourself that a function f: R ’ R is injective if and only if its graph “passes the 
horizontal line test.” (You need not hand in your conviction.) 

(c) In the same vein, say that a linear transformation T: V ’ W is injective if T(x) = T(y) 
implies x = y. Prove that T is injective iff ker(T) = {0}.  
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13. Linear Maps and Bases, Featuring: The Rank Theorem 
 
Lemma 13.1 (Spanning the Image) 
If {v1, v2, . . . , vn, . . . } is a basis for V and if f: V ’ W is linear, then Im(f) is the span of 
f(v1), f(v2), . . . , f(vn), . . . . 

 
Proof Homework. 
 
We now look closely at linear maps and see what makes them tick. 
 
Proposition 13.2 (Linear Maps Determined by Action on a Basis) 
 If B is a basis for the vector space V and if f: V ’ W is a linear map, then f is entirely 
determined by its values on the elements of B. (That is, if f and g do the same thing to the basis 
vectors, then f = g.) 
 
Proof. Let B = {v1, v2, . . . , vn, . . . } be a basis for V. Then we can write, for any v é V, 
 v = ¬1v1 + ¬2v2 + . . . + ¬rvr 
for some scalars ¬i and some r. Thus, 
     f(v) = f(¬1v1 + ¬2v2 + . . . + ¬rvr)  
  = f(¬1v1) + f(¬2v2) + . . . + f(¬rvr)  
  = ¬1f(v1) + ¬2f(v2) + . . . + ¬rf(vr) , 
showing that f is entirely determined by the vectors  
 f(v1),  f(v2),  . . . , f(vr) , . . .  
as required. ✛ 
 
Now assume that f: V ’ W is linear with V and W finite dimensional.  
 
Definition 13.3 The rank of f is the dimension of Im f; the nullity of f is the dimension of ker f. 
 
Examples in class 
 
Theorem 13.4 (Rank Theorem)  
Let f: V’W  be linear, with V and W finite dimensional. Then 
 Rank(f) + Nullity(f) = dim V. 
 
Proof Let Rank(f) = r, and Nullity(f) = k. Then ker(f) has a basis consisting of k vectors {v1, . . 
. , vk}, say. Since these are linearly independent, one may keep adding vectors not in its span to 
obtain a basis 
 {v1, . . . , vk, w1, . . . , ws} 
of V. (Justification: Exercise Set 10 #3) I claim that the vectors f(w1), . . . , f(ws) form a basis for 
Im(f), and hence r = s. All we have to show is linear independence and the spanning property.  
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For linear independence, if  
 ¬1f(w1) + . . . + ¬sf(ws) = 0 
then, since f is linear, 
 f(¬1w1 + . . . +¬sws) = 0, 
and hence  
 ¬1w1 + . . . +¬sws é ker(f).  
Since ker(f) is spanned by {v1, . . . , vk}, it follows that 
 ¬1w1 + . . . +¬sws = µ1v1 + . . . + µkvk  
for suitable scalars µi . But then 
 ¬1w1 + . . . +¬sws - µ1v1 - . . . - µkvk = 0 
Since {v1, . . . , vk, w1, . . . , ws} is a basis for V, we must therefore have 
 ¬1 = . . . = ¬s = µ1 = . . . = µk = 0. 
But since the ¬'s are zero, we have shown linear independence of the vectors f(w1), . . . , f(ws) . 
  
For the spanning property, we must show that the vectors f(w1), . . . , f(ws) span Im(f). Thus let 
w é Im(f). Then w = f(v) for some v é V, by definition of the image. Since {v1, . . . , vk, w1, . . 
. , ws} is a basis for V, we can write 
 v = ¬1w1 + . . . +¬sws + µ1v1 + . . . + µkvk  
for appropriate scalars ¬i and µi. Thus, 
 w = f(v) = f(¬1w1 + . . . +¬sws + µ1v1 + . . . + µkvk ) 
  = f(¬¬1w1 + . . . +¬sws) + f(µ1v1 + . . . + µkvk) 
  =  f(¬¬1w1 + . . . +¬sws) ,      
since the v's are in the kernel of f, 
  = ¬1f(¬w1) + . . . + ¬sf(ws)  
by linearity of f. Thus w is in the span of the f(wi)'s, showing the spanning property. 
 
We now have s+k = dimV. Since s = r, r+k = dimV, completing the proof. ✺ 
 
Proposition and Definition 13.5 (Rank of a Matrix) 
Let A be an m¿n matrix, and let  

  A ^ : Rn ’ Rm 
be multiplication by A. Let A' be obtained from A by passage to column reduced echelon form. 

Then the non-zero rows in A' are a basis for the image of  A ^ , so that 

 rank( A ^ ) = number of non-zero rows after column reduction. 
We call this number the column rank of the matrix A. (The row rank is defined similarly.) 
 
Proof By Lemma 13.1, the vectors  A ^ (e1)  , . . . ,  A ^ (en) span the image of  A ^ . By direct 
computation,   
   A ^ (e1) = 1st column of A, 
  . . .  
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   A ^ (en) = nth column of A. 
 
By Proposition 9.7, the span of the columns is not effected by column reduction, so that the 
nonzero columns of A' span the image of  A ^ . Thus to show that they form a basis, it remains to 
show that they are linearly independent. But, by definition of reduced echelon form, each column 
has a 1 in a slot where all the others have 0's. Thus if any linear combination of them is zero, it 
follows that the coefficients must be zero, and we are done. ◆ 
 
The above result says how to compute the (column) rank of A. For the Nullity, we know that this 
is the dimension of the solution space of AX = O. deals with  
  
By the Rank+Nullity theorem,  
 Column Rank + Dimension of Solution Space for (AX = O) = n. 
 
Thus, to get the dimension of the solution space, we compute the column rank, and get 
 Dimension of solution space = n - column rank. 
 
Theorem 13.6 (Row Rank = Column Rank) 
The row rank and column rank of any m¿n matrix are the same. 
 
Proof We show that column rank ≤ row rank, and then get the reverse inequality by looking at 
the transpose.  
  
S'pose that the row space has dimension k, and let {v1, . . . , vk} be a basis for the row space. For 
each r, write the coordinates of vr as (vr1

, vr2
, . . ,vrn

). Then each row is a linear combination of 
the v's. i.e.., 
         row 1 = r1 = c11v1 + . . . + c1kvk 
  r2 = c21v1 + . . . + c2kvk 
   . . .  
  rm = cm1v1 + . . . + cmkvk 
Here, the rows are given by 
 r1 = (a11, . . . ,a1n), 
  . . .  
 rm = (am1, . . . ,amn), 
where aij are the entries of A. Plugging the r's into the first batch of equations and equating 
coordinates gives: 
 a1j = c11v1j + . . . + c1kvkj 
 a2j = c21v1j + . . . + c2kvkj 
 . . .  
 amj = cm1v1j + . . . + cmkvkj 
Thus 
 (a1j, a2j, . . . , amj) = v1j(c11, . . . , cm1) + v1j(c12, . . . , cm2) + . . . + v1j(c1k , . . . , cmk) . 
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Since the LHS is the jth column of A, it follows that the jth column of A is a linear combination 
of the k vectors on the right. Thus the dimension of the column space is ≤ k. But k is the row 
rank, so we get: 
 column rank ≤ row rank. 
Done. ✞ 
 
It follows that to get the rank of A, we can either row reduce or column reduce, and will get the 
same answer.  
 
Recall now that we saw, on p.55, that, if A is any m¿n matrix, and if  A ^  is the linear map 
Rn’Rm determined by A, then 

  A ^ (e1) = 1st column of A, 

   A ^ (e2) = 2nd column of A, 
  . . .  
  A ^ (en) = nth column of A. 

Thus, we can construct the matrix A once we know what  A ^  is required to do to the basis vectors 
e1, e2, . . . , en of Rn. 
 
Examples: Rotation, projections, shears, reflections 
 
Exercise Set 13 
Anton §5.6 #2(a), (b), (d) (e) 
 
Hand In (Value = 15 ) 
1. Prove Lemma 13.1  
2. Use Exercise Set 11 #5 to give a new proof that row operations don't effect the (row) rank of a 
matrix. You are not allowed to use Proposition 9.7. 
3. Show that row operations do not effect linear independence of the columns of a matrix, but 
may effect the span of the columns. 
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14. The Matrix of  Linear Map 
 
Here, we see that, if f: V ’ W is any linear map with V and W finite dimensional, then f may be 
“represented” by a matrix, whether or not V and W are subspaces of Euclidean space. 
 
Definition 14.1 Let V and W be finite dimensional vector spaces with selected bases B = 
{v1, v2, . . . , vn}  and C = {w1, w2, . . . , wm} respectively. Also let f: V ’ W be a linear 
transformation. Define the matrix [f] of f with respect to the bases B and C as follows. 
 Since C is a basis for W, we have: 
 f(v1) = a11w1 + a21w2 + . . . + am1wm; 
 f(v2) = a12w1 + a22w2 + . . . + am2wm; 
  .  .  .   
 f(v1) = a1nw1 + a2nw2 + . . . + amnwm, 
for suitable unique scalars aij. We now define the matrix [f] by taking its ijth entry to be aij. 
Therefore, by definition, the coordinates of f(vi) with respect to the basis {wj} is given by 
 

 f(vi) = ∑
j=1

n

  [f]ji wj. 

 
Notation We sometimes write [f]CB instead of just [f] if we wish to say which bases we are 
using. 
 
Now let's calculate, by brute force, just what f applied to a general vector in V is. Thus, let 
 v = ¬1v1 + ¬2v2 + . . . + ¬nvn 
be a general vector in V. Then  
 f(v) = ¬1f(v1) + ¬2f(v2) + . . . + ¬nf(vn). 
 
Substituting the above formulas for the f(vi)'s gives: 
 f(v)  =  ¬1( a11w1 + a21w2 + . . . + am1wm ) 
  + ¬2( a12w1 + a22w2 + . . . + am2wm ) 
   . . .  
  + ¬n( a1nw1 + a2nw2 + . . . + amnwm ). 
Rearranging terms by grouping together the terms with w1, w2, . . . etc. gives: 

 f(v) = ∑
j=1

n

  (a1j ¬j)w1 + ∑
j=1

n

  (a2j ¬j)w2 + . . . + ∑
j=1

n

  (amj ¬j)wm. 

 
Thus the coordinates (with respect to the w's) of f(v) are given by  

 








∑
j=1

n

  (a1j ¬j) ,  ∑
j=1

n

  (a2j ¬j) ,  . . . , ∑
j=1

n

  (amj ¬j)    

 
From the formula for matrix multiplication, we now see that this is just the transpose of the 
column vector 
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 [f]. (¬1, ¬2, . . . , ¬n)

t. 
 
Thus we can think of elements of V as column vectors (¬1, ¬2, . . . , ¬n)t, (i.e.. as elements of 
Rn), and compute f(v) by simply multiplying this column vector by [f]. Loosely speaking, once 
we are supplied with bases, V and W “are” Rn and Rm respectively, and f: V ’ W “is” 
multiplication by the matrix [f]. 
  
Question: Now just how do we get the matrix in an easy way? 
 
Answer: Look at f(v1). Its coordinates, according to the original formula in Definition 14.1 are 
given by (a11, a21, . . . , a2m). By Definition 14.1, this is just the 1st column of [f]. Similarly, the 
ith column of [f] is given by the coordinates of f(vi). In other words, you get the columns of the 
matrix by applying f to the basis vectors. 
  
Examples 14.2 
(a) Determine the matrix of the map f: R2[x] ’ R3[x] given by f(p(x)) = x p(x), with respect to 
the usual bases. 
Answer: The usual basis for R2[x] is {1, x, x

2}, and that for R3[x] is {1, x, x
2, x3}. To get the 

matrix [f], we calculate: 
 f(1) = x = 0.1 + 1.x + 0.x2 + 0.x3; 
 f(x) = x2 = 0.1 + 0.x + 1.x2 + 0.x3; 
 f(x2) = x3 = 0.1 + 0.x + 0.x2 + 1.x3, 
whence  

 [f] = 






0 0 0

1 0 0
0 1 0
0 0 1

 . 

Note also that the columns of [f] represent the image vectors x, x2, x3. 
 
(b) If œ: Rn[x] ’ R is the augmentation, then, with respect to the usual bases, the matrix [œ] is 
given as follows: First, we calculate: 
 f(1) = 1 
 f(x) = 1 
 . . .  
 f(xn) = 1, 
whence [f] is the row matrix [1 1 1 . . . 1] (n repetitions.) 
 
(c) Let B = {v1, v2, . . . , vn} be any basis for Rn, let C = {e1, e2 , . . . , en} be the usual basis 
for Rn, and let f: Rn ’ Rn be the identity map. We calculate [f]CB. To do this, evaluate f on the 
basis elements vi é B getting: 
  f(v1) = v1 = (v11, v21, . . . , vn1) (The coordinates of v1); 
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  f(v2) = v2 = (v12, v22, . . . , vn2) 
   . . .  
  f(vn) = vn = (v1n, v2n, . . . , vnn). 
Thus [f]CB is the n¿n matrix whose columns are the vectors v1, v2, . . . , vn. 

 
(d) If B and C are any two bases for V, then the transition matrix from B to C is given as 
the matrix [1]CB, i.e.. the matrix of the identity with respect to the bases B and C. Thus the 
columns of the transition matrix are the coordinates of the elements of the first basis (B) with 
respect to the second basis (C). For example, the matrix in (c) above is the transition matrix from 
B to the usual basis C. We also refer to [1]CB as the change-of-basis matrix from B to C. 
 
Theorem 14.3 (Composition of Linear Maps = Multiplication of Matrices) 
If f: V ’ W and g: W ’ U are linear, and if B, C and D are bases for V, W, and U 
respectively, then 
 [gõf]DB = [g]DC[f]CB . 

 
Proof One has writing B = {bi}, C = {ci} and D = {di},  

 gõf(bi) =  £j[gõf]ji dj , 
by definition of the matrix for gõf. On the other hand, 
 g õf(bi) = g(f(bi)) = g(£k[f]kick) 

 = £k[f]kig(ck) = £k[f]ki £j[g]jkdj 

   = £k,j[g]jk [f]ki dj 

   = £j([g][f])jidj . 
Equating coefficients now gives the result.  ❈ 
 
Corollary 14.4 The change-of-basis matrix [1]BC is invertible, with inverse [1]CB. 

 
Proof Since 1õ1 = 1, the identity map on V, we apply the above theorem with D = B, getting  
 [1]BC[1]CB = [1]BB = I, 

and similarly the other way 'round. ❉ 
 
Consider the following question: 
 
Question: Given f: V ’ V with a known matrix with respect to some basis, how do we find the 
matrix of f with respect to some other basis? 
 
 This question is answered by the . . . 
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Theorem 14.5 (Change-of-Basis)  
Let f: V ’ V be any linear map, let B be any basis of V, and let [f]B be its matrix with respect 
to the basis B. Then if C is any other basis, one has 
 [f]C = P-1[f]BP, 

where P is the change-of-basis matrix [1]BC. 

 
Proof Since f = 1õfõ1 as a map V ’ V, one has, by the lemma, 
    [f]C = [1õfõ1]C 

       = [1]CB[fõ1]BC 

          = [1]CB[f]BB[1]BC 

             = [1]BC-1[f]BB [1]BC, 

as required. ♥ 
 
This prompts the following. 
 
Definition 14.6 If P is any invertible n¿n matrix such that A' = P-1AP, then we say that the 
n¿n matrices A and A' are similar. Thus, by Theorem 14.6, two matrices are similar if they 
represent the same map with respect to different bases. 
 
Note The matrices A and A' are similar if, for some invertible P, A' = P-1AP. 
 
In order to help us compute the change-of-basis matrices [1]BC , we use the following lemma. 
 
Lemma 14.7 If B and C are any bases for Rn, then the transition matrix from B to C is given 
by 
 [1]CB = P-1Q, 

where P is the invertible matrix whose columns are the vectors in C, while Q is the invertible 
matrix whose columns are the vectors in B. 
 
The proof is Exercise Set 14 #3. 
 
Exercise Set 14 
Anton §4.2 #5, 6 
 
Hand In (Value = 15 ) 
1. Let V and V' be vector spaces with B = {b1, ... , bn} a basis for V and C = {c1', ... , cn'} a 
collection of vectors in V'.  

(a) Show that there exists a unique linear map T: V ’V ' with the property that T(bi) = ci'  for 
every i. 

(b) If C happens to be a basis, what is the matrix of this linear map? 
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2. Show that similarity of n¿n matrices is an equivalence relation. (You might wish to refer to 
your erroneous proof of this fact in the first test.) 
3. Show that, if B and C are any bases for Rn, then the transition matrix from B to C is given 
by 
 [1]CB = P-1Q 

where P is the invertible matrix whose columns are the vectors in C, while Q is the invertible 
matrix whose columns are the vectors in B. 
4. Show that any invertible matrix P is the transition matrix associated with some change of 
basis B ’ S, where S is the standard basis for Rn 
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15. Eigenvectors 
 
Definitions 15.1 If f: V ’ V is a linear map, then a nonzero vector v é V is called an 
eigenvector of f if f(v) = ¬v for some scalar ¬. The scalar ¬ is called the eigenvalue of f 
corresponding to the eigenvector v. Similarly, referring to matrices, if A is an n¿n matrix, then 
any nonzero (column) vector v is called an eigenvector of A if Av = ¬v for some scalar ¬ . ¬ is 
then called the eigenvalue of A corresponding to the vector v.  
 
Examples 15.1 

(a) The vector (1, 2)t is an eigenvector of A = 



3 1

2 4   with corresponding eigenvalue 5.  
 
 (b) If A is a scalar multiple of the 2¿2 identity matrix, then every vector in R2 is an eigenvector 
of A. 
 
(c) If A is a 2¿2 matrix representing rotation through a nonzero angle ø, then A has no 
eigenvectors. 

(d) If A = 



a 0

0 b   with a ≠ b, then A has exactly two eigenvalues, namely a and b. 
 
Proposition 15.2 If ¬ is an eigenvalue of the n¿n matrix A, then ¬ is a solution to the equation 
 det(A-¬I) = 0. 
Noting that det(A-¬I) can be expressed as a polynomial expression of the unknown ¬, we call 
this expression the characteristic polynomial of A.  
 
Proof For ¬ to be an eigenvalue of A, it means that 
 Av = ¬v 
for some nonzero column vector v. That is,  
 Av = (¬I)v, 
where I is the n¿n identity matrix. Thus we get: 
 (A-¬I)v = 0. 
This means that the matrix (A-¬I) annihilates a nonzero vector v, so, by Theorem 5.8, it cannot 
be invertible. This means that det(A-¬I) = 0, as required. ❅ 
 
Proposition 15.2 shows one how to locate all the eigenvalues: just find the roots of the 
characteristic polynomial. 
 
Example 15.3 

Find the eigenvalues of  A = 




0 1 0

0 0 1
4 -1 4

  

 
This is how you get the eigenvalues. To get the eigenvectors, we must actually solve the 
homogeneous system (A-¬I)X = O for X, once we know the eigenvalue ¬ to use. 
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Definition 15.4 The eigenspace of A corresponding to the eigenvalue ¬ is the subspace 
consisting of all the eigenvectors with eigenvalue ¬. (That this is indeed a subspace is the subject 
of one of the homework problems.) 
 
Example 15.5 

Find a basis for the eigenspaces of A = 




3 -2 0

-2 3 0
0 0 5

   

 
Exercise Set 15 
Anton §7.1 #1, 3, 5, 7, 8 
 
Hand In (Value = 10) 
1.  Show that the set of all eigenvectors of the n¿n matrix A with eigenvalue ¬ forms a subspace 
of Rn. This subspace is called the associated eigenspace. 
2. A non-zero n¿n matrix A is nilpotent if Ap = O for some positive integer p. Prove that the 
only possible eigenvalue of A.  
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16. Diagonalizing a Matrix, Where It All Comes Together 
 
Definition 16.1 An n¿n matrix A is diagonalizable if it is similar to an n¿n diagonal matrix. 
That is, there exists an invertible n¿n matrix P with P-1AP diagonal. 
 
Geometrically, a diagonal matrix is one which maps spheres centered at the origin into ellipsoids 
(also centered at the origin) with axes along the usual basis vectors. Thus diagonalizable matrices 
are matrices which are diagonal in the eyes of some basis B (possibly different from the usual 
one), and thus map spheres into ellipsoid-type objects whose axes are not necessarily parallel to 
the usual basis vectors, but are parallel instead to the vectors in the basis B.  
 
We now consider the question: Under what conditions is a given n¿n matrix A diagonalizable?  
Here is one answer. 
 
Theorem 16.2 (A Criterion for Diagonalizbility) 
An n¿n matrix is diagonalizable iff it has n linearly independent eigenvectors. 
 
Proof  ⇒   First, s'pose A is diagonalizable. Then there is an invertible matrix P with P-1AP = 

D, a diagonal matrix [¬1|¬2| . . . ¬n]. We must find the n lineary independent eigenvector. Well, 
take B to be the basis of Rn {v1, . . . , vn} consisting of the columns in P. Then  
 AP = PD, 
where PD is P with its columns multiplied by the ¬i. Equating columns now gives 
 Av1 = ¬1v1, . . . , Avn = ¬nvn, 
showing that all of the vi are eigenvectors. 
 
⇐   Conversely, if A has a basis B of n linearly independent eigenvectors v1, . . . , vn, then we 

can write  
 Av1 = ¬1v1, . . . , Avn = ¬nvn for certain eigenvalues ¬1, . . . , ¬n.  
Thus, if P is the n¿n matrix whose columns are the vectors v1, . . . , vn, then  
 AP = PD, 
where D is the diagonal matrix [¬1|¬2| . . . ¬n]. Thus, P-1AP = D, since P is invertible. ✯ 
 
Corollary 16.3 (How To Diagonalize A Diagonalizable Matrix) 
If A is a diagonalizable matrix, and if P is the matrix whose columns are a basis of eigenvectors, 
then P-1AP is diagonal, and its diagonal entries are the eigenvalues corresponding to the 
eigenvectors forming the columns of P. 
 

Example 16.4 Find an invertible matrix P which diagonalizes A = 




3 -2 0

-2 3 0
0 0 5

 , given that 

we know the e/vectors (-1, 1, 0), (0, 0, 1) and (1, 1, 0), with corresponding eigenvalues 5, 5 
and 1 respectively. 
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(More Examples in class) 
 
Now, we wonder, when is it the case that A does indeed have a basis of eigenvectors? Here is a 
partial answer. 
 
Proposition 16.5 (If the Eigenvalues Are All Different, Then the Eigenvectors are 
Independent) 
The set of eigenvectors corresponding to a set of distinct eigenvalues of A is linearly 
independent. 
 
Proof S'pose ¬1, . . . , ¬r are r distinct eigenvalues whose corresponding vectors are v1, . . . , 
vr. Then we must show these vectors independent. Thus s'pose not. Then we can satisfy the 
equation 
 å1v1 + . . . + årvr = 0 
with at least one åi ≠ 0. Renumber them to make å1≠0. Multiplying both sides by A gives: 
 ¬1å1v1 + . . . + ¬rårvr = 0. 
Also, multiplying both sides by ¬r gives: 
 ¬rå1v1 + . . . + ¬rårvr = 0 
Subtracting the last two equations gives: 
 (¬1-¬r)å1v1 + . . . + (¬r-1-¬r)år-1vr-1 + (¬r-¬r)årvr = 0. 
Since the last term is zero, this gives: 
 (¬1-¬r)å1v1 + . . . + (¬r-1-¬r)år-1vr-1 = 0. 
Now, since ¬1 ≠ ¬r, the coefficient of v1 is still nonzero, and now the vectors v1, . . . ,vr-1 are 
dependent. Continue in this fashion until you end up with: 
 (¬1-¬2) (¬1-¬3) . . . (¬1-¬r) å1v1 = 0,  
a contradiction.  ✻ 
 
Corollary 16.6 (If The Eigenvalues Are All Different, then A is Diagonalizable) If the n¿n 
matrix A has n distinct eigenvalues, then A is diagonalizable. 
 
Proof Homework. ● 
 
Some Advanced Results (which we will not prove) 
 
Theorem 1 (Test for Diagonalizability) 
The n¿n matrix A is diagonalizable if and only if: 
(a) its characteristic polynomial c(x) factors as a product of linear factors, and 
(b) if (x-c1), (x-c2), . . . , (x-cr) are the distinct factors, then  
 (A-c1I)(A-c2I). . . (A-crI) = 0. 
 
Theorem 2 (Diagonalizability of Symmetric Matrices) 
If A is a symmetric matrix, then there is an orthogonal matrix P such that P-1AP is diagonal. 
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Exercise Set 16 
Anton §7.2 #1–15 odd 
 
Hand In (Value = 10) 
1. Prove Corollary 16.6. 
2. Prove that similar matrices have the same eigenvectors. 
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17. Classification of Finite Dimensional Vector Spaces and Other Theory 
 
Definition 17.1 Let X and Y be sets. The function f: X’Y is injective (one-to-one) if f(x) = f(y) 
⇒ x = y. 
 
Examples 17.2  
(a) f: R’R; f(x) = x3 is injective, whereas g: R’R; g(x) = x2 is not, 
(b) f: R[x]’R; f(p(x)) = p(1) is linear (the augmentation map) but not injective. 

(c) Let T: R2’R3 be given by T =  A ^ , with A = 




1 1

2 1
2 2

 . Then T is injective. 

 
The following result was proved in Exercise Set 12. 
 
Lemma 17.3 (Criterion for Injectivity) 
Let V and W be vector spaces. The linear map T: V’W is injective iff ker T = {0}. 
 
Corollary 17.4 

 A ^ : Rn’Rm is injective iff rank(A) = n. 
 
Proof   A ^  is injective ⇔ ker A ^  = {0} 

   ⇔ dim (ker A ^ ) = 0 

   ⇔ nullity ( A ^ ) = 0 ⇔ rank(A) = n. ◆  
 
Definition 17.5 The function f: X’Y is surjective (onto) if, for every y é Y there exists x é X 
such that f(x) = y. In other words: f is surjective iff Im(f) = Y. A consequence of this is that: 
 
Lemma 17.6 

 A ^ : Rn’Rm is surjective iff rank(A) = m. 
 
Example 17.7 Is the map  A ^  in Example 17.2(c) surjective? 
 
Definition 17.8 The function f: X’Y is bijective (one-to-one and onto) if it is both injective 
and surjective. 
 
Let A be any invertible matrix. Then, by 17.4 and 17.6,  A ^  is bijective. In fact, 
 
Proposition 17.9 

 A ^ : Rn’Rn is bijective iff A is invertible. 
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Definition 17.10 The functions f: X’Y and g: Y’X are inverse functions if the composite 
functions gõf: X’X and fõg: Y’Y are both the respective identity functions. That is,  
  
 g(f(x)) = x for all x é X,  
and f(g(y)) = y for all y é Y. 
 
We write g as f-1 when this is the case. 
 
Note If g is an inverse of f, then f is an inverse of g. 
 
Examples 17.11  
(a) exp: R’R+ and loge: R

+’R are inverse functions 
(b) sin: [-π/2, π/2]’[-1, 1] and arcsin: [-1, 1]’[-π/2. π/2] are inverse functions. 
(c) f: R’R; f(x) = x2 and g: R’R; g(x) = x  are not inverse functions. 
(d) If B = A-1 where A and B are n¿n matrices, then  A ^  and  B ^  are inverse linear functions. 
 
Proposition 17.12 
(a) The inverse of a function f: X’Y is unique; that is, f can have at most one inverse. 
(b) f: X’Y is invertible (has an inverse) iff f is bijective. 
(c) If T: V’W is an invertible linear map, then T-1 is also a linear map. 
 
Definitions 17.13 We call an invertible linear map a linear isomorphism. An injective linear 
map is a linear monomorphism, and a surjective linear map is a linear epimorphism. A linear 
isomorphism from a vector space V to itself is called a linear automorphism. Two vector spaces 
V and W are (linearly) isomorphic if there exists a linear isomorphism ˙: V ’ W.  When V and 
W are isomorphic, we write V fl W. 
 
Note If V and W are isomorphic, then V and W "look" the same; there is a one-to-one 
correspondence between their elements, and the structure is preserved by this correspondence. In 
other words, W is just "a copy" of V. 
 
Examples 17.14  
(a) Rn[x] fl Rn+1   
(b) R[x] fl RÏ  
(c) M[m,n] fl Rmn. 
 
 
Theorem 17.15 (Classification of Finite Dimensional Vector Spaces) 
Two finite dimensional vector spaces V and W are isomorphic iff dim(V) = dim(W). 
 
It follows that every finite dimensional vector space is isomorphic with Rn for precisely one n. In 
other words, every finite dimensional vector space "looks like" Rn for some n.  
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Proposition 17.16 
If f: V’W is a linear monomorphism, then f induces a linear isomorphism V fl Im,f. 
 
Extra Material: Classification of Infinite Dimensional Vector Spaces 
 
Definition 17.17 Two sets S and T have the same cardinality if there exists a bijection ø: S’T. 
If S is any set,  its cardinality |A| is the class of all sets with the same cardinality as S. For 
example, the cardinality of the integers is called “aleph-0” 
 |Z| = ℵ0 , 
and 
 |R| = ℵ1. 
 
Theorem 17.16 (Classification of All Vector Spaces) 
Two vector spaces V and W are isomorphic iff they have bases with the same cardinality. 
 
 
Exercise Set 17 
(Hand In Value = 25) 

1. (a) Let T: Rn’Rm be given by T =  A ^  for any m¿n matrix. Show that T is injective 
⇒ m ≥ n.  
   (b) Is the condition m ≥ n sufficient to guarantee injectivity of T above? Prove or give a 
counterexample. 

2. (a) Let T: Rn’Rm be given by T =  A ^  for any m¿n matrix. Show that T is surjective 
⇒ n ≥ m.  
   (b) Is the condition n ≥ m sufficient to guarantee surjectivity of T above? Prove or give a 
counterexample. 
3. Let f: V’W be any linear map, and let K' be any linear complement of ker f. Show that the 
restriction of f to K' is a linear monomorphism. 
4. Show that, if f: V’W is any linear map, then f induces an isomorphism K' fl Im f, where K' 
is any linear complement of ker f. 
 
✰ A Little Extra Credit If, without the help of others in the class, you can prove, and verbally 
defend your proof, of Theorem 17.16, three points will be added to your final examination score. 
Deadline: the week before finals. 
 
 
 
 


