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Topic 1   
Simple Linear Regression (Based on §§ 14.1-14.2 in book) 
 
A linear function of one variable is a function of the form 
 y = f(x) = ∫0 + ∫1x, 
where ∫0 and ∫1 are the parameters of the model. Its graph is a straight line with y-
intercept ∫0 and slope ∫1. We also call a linear model a first order model. 
 
In general, models specified by a mathematical equation are called deterministic models, 
since they hypothesize an exact relationship between x and y. 
 
Examples 1 
(a) y = 4 + 3x; y = -22.345 - 4.01x  
(b) A linear demand equation has the form y = ∫0 + ∫1x where x is the unit price of an 
item, and y is a measure of the demand (e.g. monthly orders or sales).  
 
Two Data Points  
If we are given only two data points (x1, y1) and (x2, y2), then the equation of the line 
through them is given by 
 y = ∫0 + ∫1x 
where 

 ∫1 =  
y2-y1

x2-x1
 , 

and  ∫0 = y1 - ∫1x1. 
 
Worksheet 1 
Find the equation of the line through (1, 3) and (3.2, 5). 
 
Solution 

 ∫1 =  
y2-y1

x2-x1
  =  

                         
                   =  

 ∫0 = y1 - ∫1x1. =   
 
Therefore, the equation of the line is 
 
 y = ∫0 + ∫1x 

 y =                                   

 
Probabilistic Models 
In real life, we cannot expect an exact mathematical relationship between, say, price and 
demand, but we might hypothesize instead that the actual demand is given by, say 
 y = ∫0 + ∫1x + œ, 
where œ is a random error component. Such a model is called a probabilistic model.  
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Q Exactly what is the random error? 
A Actually, œ is a random variable, specified for each value of x, as follows. For a fixed 
value of x, the experiment consists of measuring y, and then subtracting the theoretical 
prediction ∫0 + ∫1x from the result. 
 
Q What do you mean by a “random variable specified for each value of x?” 
A This means, we actually have lots of random variables œx, one for each value of x. 
However, we shall be making the assumption that all of the œxs have the same normal 
distribution, so can drop the subscript and write œ instead. 
 
Probabilistic First Order Model 
 y = ∫0 + ∫1x + œ 
y = dependent variable (also called the response variable) — that is what is being 
modeled. 
x = independent variable (also called the predictor variable) 
∫0 = y-intercept 
∫1 = slope; the increase of y per one unit increase in x. 
œ = random error: a random normal variable with mean 0 that does not depend on x. 

1 2 3 4

1

2

3

x

y

y = 0.8 + 0.5x

observed values

random error

 
The deterministic part of the function,  
 E(y) = ∫0 + ∫1x 
is referred to as the line of means, since the mean of y– = ∫0 + ∫1x + œ– = ∫0 + ∫1x.  
 
Best Fit Line: Least Squares 
In the simplest case we have two data points and we only need to find the equation of the 
line passing through them. However, it often happens that we have many data points that 
don't quite all lie on one line. The problem then is to find the line coming closest to 
passing through all of the points. 
 
Example 2  
The following table list measured values of sales revenues for various advertising 
expenditures. 
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Advertising Expenditure (x) ($100) 1 2 3 4 5 
Sales Revenue (y) ($1000) 1 1 2 2 4 

 
First, we plot the given data in a scattergram.  
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The regression line will be the one that minimizes the sum of the squares of the errors 
(SSE) (also known as the sum of the squares of the residuals), as shown. (The errors 
are given by observed value - predicted value):  
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From the chart, we see that SSE = 2 and SE = 0 for the given line (although it is not the 
regression one.) To obtain the actual regression line, we would have to adjust the line 
above until we obtained the lowest SSE. 
 
Worksheet 2 
You are conducting research for a cable TV company interested in expanding into China 
and we come across the following figures showing the growth of the cable market there.  

 
Year (x) 

(x= 0 represents 2000)  
-2 -1 0 1 2 3 
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Households with Cable (y)  
(Millions) 

57 60 68 72 80 83 

Data are approximate, and the 2001–2003 figures are estimates. Sources: HSBC Securities, Bear Sterns/New York 
Times, March 23, 2001, p. C1. 

30
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-2 -1 0 1 2 3 4  
Use Excel to compute SSE for the linear models y = 72 + 8x and y = 68 + 5x. Which 
model is the better fit?  

Model 1: y = 72 + 8x  

Year 
x  

Observed 
y  

Predicted 
ŷ  = 72 + 8x  

Residual 
y - ŷ 

Residual2 

(y - ŷ)2 

-2 57 56 57-56 =1 12=1 
-1 60    
0 68    
1 72    
2 80    
3 83    

   SSE =   
 

Model 2:  y = 68 + 5x  

Year 
x  

Observed 
y  

Predicted 
ŷ  = 68 + 5x  

Residual 
y - ŷ 

Residual2 

(y - ŷ)2 

-2 57    
-1 60    
0 68    
1 72    
2 80    
3 83    
   SSE =   

 
Better model = Model with smaller SSE =                                             
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Least Squares (Regression) Line 
The least squares line associated with the points (xi, y1) is the line the minimizes the sum -
of-squares error, SSE, and has the form 
 ŷ  = b0 + b1x 
with 

 Slope b1 = 
SSxy

SSxx
  

 Intercept b0 = y– - b1x– 
where 
 x– and y– are te sample means of x and y, 

 SSxy = £xiyi - 
(£xi)(£yi)

n    = £(xi-x–)(yi-y–) 

 SSxx = £xi
2 - 

(£xi)
2

n     = £(xi-x–)2 

 n = sample size 
Also, 
 SSE = sum of squares of errors = £(yi-yi

^  )2 = SSyy - b1SSxy 
 
Question Why minimize SSE and not, say, the absoute values of the errors? 
Answer There are two important reasons: 
(1) Mathematically, it generalizes the notion of the sample mean. For instance, look at the 
following points: 

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5

 
Any horizontal line will minimize the sum of the distances shown (the absolute values of 
the errors). However, only the line y = 1.5 (which happens to be the mean of the given y-
values) will minimize SSE. In general, the sample mean x– of a collection of values of X is 
the uniqu number that minimizes SSE, and not the absolute values of the errors. 
(2) Statistically, the regression line gives us unbiased estimators of the population 
parameters ∫0 and ∫1. (Also see the discussion in Topic 2.) 
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Worksheet 3 A Tabular Approach for By-Hand Calculation or Excel Calculation 
Compute the regression line using the given data, and supply the missing information: 
 x = Advertising expenditure in hundreds of dollars 
 y = Sales revenue in thousands of dollars 
 
 x  y  x2 xy  y2 
 1 1    
 2 1    
 3 2    
 4 2    
 5 4    

£ (Sum)      
Means   

 
Note that the values in the bottom rows are the sums of the entries in that column. 
Substituting these values in the formula gives (n = 5) 

  SSxy = £xiyi - 
(£xi)(£yi)

n    =             - 
          

          
 =               

  SSxx = £xi
2 - 

(£xi)
2

n    =             - 
          

          
 =             

  SSyy = £yi
2 - 

(£yi)
2

n    =             - 
          

          
 =             

Regression Coefficients: 

  b1= 
SSxy

SSxx
  =  

          

           =             

  b0 = y– - b1x–  =            -                      =            
Thus, the least squares line is 

  ŷ  = b0 + b1x : ŷ  =                                   
       

  SSE = SSyy - b1SSxy =            -                      =            
Interpreting the coefficients: 
For every 1-unit increase in x, y increases by b1 units 
For every ______________ increase in ___________________ , ___________________ 
increases by __________ . 
 
Estimating y:  
If I pay $3500 (x = 3.5) for advetrtising, I can expect sales revenues of 
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 ŷ = _________________________________________ 
 
 
Here is a graph of the regression line with the associated data: 
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Using Excel Regression Output to obtain the regression line: 
Following is some of the Excel regression output for this data 
 

Regression Statistics    
Multiple R 0.90369611    
R Square 0.81666667    
Adjusted R 
Square 

0.75555556    

Standard 
Error 

0.60553007    

Observations 5  ← n   

     
ANOVA     

 df SS MS F 
Regression 1 SST →  4.9 4.9 13.3636364 
Residual 3 SSE  → 1.1 0.36666667  
Total 4 SSyy →     6   

     
     

 Coefficients Standard 
Error 

t Stat P-value 

Intercept b0  →  -0.1 0.6350853 -0.1574592 0.88488398 

X Variable 1 b1  →   0.7 0.19148542 3.65563078 0.03535285 

 
The values of the regression coefficients are shown in the indicated cells, and the sum of 
the squares error (SSE) is listed in the ANOVA (Analysis of Variance) part under SS. 
 
Execicses for this topic: 
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p. 553: #4 (compute the regression equation two ways: (1) by hand (2) Using the Excel 
regression analysis.) 
p. 557 #12 (As above) 
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Topic 2  
The Coefficient of Determination and the Variability of the Random Term.   
(§14.3 and part of §14.5 in the text) 
Coefficient of Determination 
 
Question If my data points do not all lie on one straight line, how can I measure how 
closely they can be approximated by a straight line? 
 
Answer  Think of SSE for a moment. It measures the sum of the squares of the deviations 
from the regression line, and therefore itself constitutes a measurement of goodness of fit. 
(For instance, if SSE = 0, then all the points lie on a straight line.) However, SSE depends 
on the units we use to measure y, and also on the number of data points (the more data 
points we use, the larger SSE tends to be). Thus, while we can (and do) use SSE to 
compare the goodness of fit of two lines to the same data, we cannot use it to compare the 
goodness of fit of one line to one set of data with that of another to a different set of data. 
 To remove this dependency, statisticians have found a related quantity that can be 
used to compare the goodness of fit of lines to different sets data. This quantity, called the 
coefficient of determination, coefficient of correlation or correlation coefficient, and 
usually denoted r, is between -1 and 1. The closer r is to -1 or 1, the better the fit. For 
an exact fit, we would have r = -1 (for a line with negative slope) or r = 1 (for a line 
with positive slope). For a bad fit, we would have r close to 0.the figure shows several 
collections of data points with least squares lines and the corresponding values of r. 
 
 

y

x

r = -1

y

x

r = 1

y

x

r = 0.5

y

x

r = 0.2  
 
In the Excel printout, r is found here: 
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SUMMARY OUTPUT  
   

Regression Statistics  
Multiple R 0.90369611  ← r 
R Square 0.81666667  ← r2 

Adjusted R 
Square 

0.75555556  

Standard 
Error 

0.60553007  

Observations 5   
   

 
Question How do we compute and interpret r? 
 
Answer Actually, it's easier to compute and interpret r2. First, let's see what the quantities 
SSyy and SSE measure: 
  SSyy is the sample variation in y (in fact, its expected value is the variance of y 
and measures the deviation of y from the mean y– of all values of y.  
Note SSyy is also called SST, the Total Sum of Squares and can also be computed by 
 
  SST = £(yi - y–)2  = SSyy 

 SSE measures the deviation of y from the linear predicted ŷ  
y

x

SSyy

y – y

y

x

SSE

y – ŷ

 
     SST 
 
SST - SSE measures the part of the deviation of y from the mean that can be attributed to 
x. (For a perfect linear set of data SSE = 0, so all the deviation of y from the mean can be 
attributed to the value of x. On the other hand, if ∫1 was 0, then SST = SSE, so none of 
the deviation of y from the mean is attributable to the value of x.) 
 
This quantity SST - SSE is also called the sum of squares due to regression, and is 
denoted by SSR. 
 
Thus, the proportion of the total sample variation that can be attributed to x is given by 
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 r2 = 
SSR
SST  = 

SST - SSE
SST   = 1 - 

SSE
SST  

 
and this is just the square of the coefficient of determination. 

 
Coefficient of Determination r  
 

 r2 = 
SSxy

2

 SSxx SSyy
  or   r2 = 

SSR
SST  

        By Hand      Excel       
 
It appears under “Multiple R” in the Excel regression analysis. 
 
Interpretation r2 is the proportion of the sample variation in y attributable to the value of 
x in a linear relationship. 
 
Quick Example If r2 = 0.85, then approximately 85% of the sample variation of the 
value of y is due to the value of x (assuming a linear relationship). 
 
 
Worksheet 1 — Obtaining and Interpreting r2 from Excel Output 
 Following is a partial Excel Output for a regression analysis of profit ($ million) as a 
function of time (years since 1995). Use the given data to compute r, and interpret the 
result.  
 
SUMMARY OUTPUT    
 
ANOVA 

    

 df SS MS F 
Regression 1 2.9575 2.9575 2.87874574 
Residual 5 5.13678571 1.02735714  
Total 6 8.09428571   

     
 Coefficients Standard 

Error 
t Stat P-value 

Intercept -2.6714286 0.85663676 -3.118508 0.02629654 
X -0.325 0.1915498 -1.6966867 0.15051834 

     
 
Solution We use 

 r2 = 
SSR
SST  = 

               

                =                           

 so r = r2 ‡                             
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Thus, approximately _______% of the variation of profits is due to the value of time, if 
we assume a linear model. (The rest of the variation is due to “statistical noise.”) 
 
Worksheet 2 — Calculating Correlation by Hand 
Use the “By Hand” table above to compute r2 for the following data: 
  

x  -2 0 2 4 6 
y  -1 -2 -4 -3 -5 

 
 x  y  x2 xy  y2 
 -2 -1    
 0 -2    
 2 -4    
 4 -3    
 6 -5    
£ (Sum)      

 

r2 = 
SSxy

2

 SSxx SSyy
  = 

               

                                   ‡                           

 so r = r2 ‡                           

 
 
Variability of the Random Term  
First we record some consequences of the thre basic assumptions for lienar regression. 
Revall that our original probabilitic model is 

y = ∫0 + ∫1x + œ 
where œ is normal with mean 0 an standard deviation ß. This quantity œ meqasures the 
variability of the random term, so the question is, how do we estimate it? 
 
Variability of the Random Term 
 
An unbiased estimator for ß2 is given by 

 s 2 = 
SSE
n-2  = 

SSE
 Degrees of freedom 1 

where SSE can be calculated from the following formula: 
 SSE = sum of squares of errors = £(yi-yi

^  )2 = SSyy - b1SSxy 
s is called the estimated standard error of the regression model. (s2 is also called the 
mean square error.)  

                                                
1 There are n-2 degrees of freedom because we are estimating two parameters ∫0 and ∫2. 
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In the Excel output, s appears in the “Regression Statistics” part of the table. See if you 
can also find the Mean square error in the table. 

 

 
 
Interpretation of s  
We can use the Empirical rule here. It says that approximately 67% of all the observed 
values of y are within ±ß of y–, Using this for sample statitics, we deduce that around 67% 
of all the observed values of y are within ±s of ŷ. Similarly, approximately 95% of all the 
observed values of y should lie within ±2s of ŷ. 
 
 
Quick Example Look at the above Excel regression analysis. 
 SSE = sum of squares of residuals = 1.1 

Thus, s2 = 
1.1
n-2  = 

1.1
5-2  ‡ 0.36666667,  

so s  ‡ 0.605530. 
  
Worksheet 3 — Calculating s  by Hand  
Let us go back to the original data we were using before: 
 x = Advertising expenditure in hundreds of dollars 
 y = Sales revenue in thousands of dollars 
Compute SYX, and confirm this by looking up the value in the Excel output. 
 
 x  y  x2 xy  y2 
 1 1    
 2 1    
 3 2    
 4 2    
 5 4    
£ (Sum)      

Means   
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  SSxy = £xiyi - 
(£xi)(£yi)

n    =             - 
          

          
 =               

  SSxx = £xi
2 - 

(£xi)
2

n    =             - 
          

          
 =             

  SSyy = £yi
2 - 

(£yi)
2

n    =             - 
          

          
 =             

  b1= 
SSxy

SSxx
  =  

          

           =             

       

  SSE = SSyy - b1SSxy =            -                      =            

  s2 = 
SSE
n-2  = 

          

            ‡                       

  s = s2  ‡                       

 
 Excel Regression Analysis: s ‡                       
 
Interpretation: In the residual plot, we can expect to find approximatley 95% (that is, 
almost all) the observed values between __________ and ___________ . 
 
 
Exercises for this topic: 
p.563 # 15: Use the By-Hand formulas above to compute r2 and not the ones in the book. 
Then use Excel to compuate it as we did. 
p. 564 # 20: Excel only when computing r2. 
Also, compute s for both above exercises. 
 



 16 

Topic 3  
Inferences about the Slope and Correlation Coefficient   
(Based on §14.5 in book) 
 
In this topic, we will be able to answer several questions. Here is the first one. 
 
Question 1  
Does y  really depend on x based on the given data? 
 
For example, if you did a regression of a person's blood pressure as a function of his or 
her age, you would expect the answer to be yes, but if you did a regression of a soccer 
player's scoring average per game as a function of the number of kibbles and bits my pet 
chia ate on that day, you would expect the answer to be “no.” How can we analyze this in 
less obvious situations? 
 
First Recall that we have made an assumption that y = ∫0 + ∫1x + œ. The quantities ∫0 
and ∫1 are thus, in effect, hypothesized parameters of the population from which the 
data is sampled. When we computed, we were making estimates of these parameters.  
 
Q Why can't we just take the mean of a sample to estimate ∫0 and ∫1? It worked in 
QM1... 
A We have no way of sampling ∫0 and ∫1 separately: all we can sample is y. 
 
Q OK, so we used those strange formulas to compute b0 and b1. Are they at least 
unbiased estimators of ∫0 and ∫1? 
A  Yes: given our assumptions about the model (above), the sampling distribution of b1 is 
always normal with mean ∫1 (since it is an unbiased estimator) and standard deviation 

 ß
 
b1

 = 
ß

 SSxx

  ‡ 
s

SSxx

 . 

 
We call this latter quantity sb1

. So, 

 sb1
 = 

s

SSxx

  

 
Before going on, we really need to (1) know where all this stuff is in the Excel table, and 
(2) know how to get these numbers by hand. The following formulas include things we 
have'nt yet gotten to, but have patience... 
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The Excel Table Explained (So Far): 
Regression Statistics     

Multiple R r     
R Square r2     
Adjusted R 
Square 

     

Standard 
Error 

s     

Observations n     
      

ANOVA      
 df SS MS F  

Regression k SSR MSR MSR/MSE  
Residual n-k-1 SSE MSE   
Total n-1 SSyy SSyy/(n-1)   

      
 Coefficients Standard 

Error 
t Stat P-value  

Intercept b0 sb0 
test statistic 
 for H0: ∫0 = 
0:  

p-value for 
two-tailed test 

0ne-tailed: 
divide this by 2 

X b1 sb1 
test statistic 
 for H0: ∫1 = 
0:  

p-value for 
two-tailed test 

 

 
Calculating Everything By Hand 
All we need are the quantities SSxx, SSxy, SSyy, and x–, y– 

SSxx = £xi
2 - 

(£xi)
2

n    SSxy = £xiyi - 
(£xi)(£yi)

n    SSyy = £yi
2 - 

(£yi)
2

n   

 x– = 
£xi
n    y– = 

£yi
n   

 b1 = 
SSxy

SSxx
   b0 = y– - b1x– 

 SSE = SSyy - b1SSxy 

 r2 = 1 - 
SSE
SSyy

  s2 = 
SSE
n-2  

 sb1
= 

s

SSxx

     sb0 
= s

1
n+

x–2

SSxx
  

 t = 
b1

 sb1

   (for H0: ∫1 = 0)  t = 
b0

 sb0

   (for H0: ∫0 = 0) 

 Confidence Interval for ∫1: b1± tå/2 sb1
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Worksheet 1 — Computing the Terms in the Excel Output by Hand 
 
 x  y  x2 xy  y2 
 1 1 1 1 1 
 2 1 4 2 1 
 3 2 9 6 4 
 4 2 16 8 4 
 5 4 25 20 16 
£ (Sum) 15 10 55 37 26 

Means 3 2 
 

 SSxy = £xiyi - 
(£xi)(£yi)

n   = 37 - 
(15)(10)

5   = 7 

 SSxy = £xiyi - 
(£xi)(£yi)

n   = 37 - 
(15)(10)

5   = 7 

 SSxx = £xi
2 - 

(£xi)
2

n   = 55 - 
152

5   = 10 

 SSyy = £yi
2 - 

(£yi)
2

n   = 26 - 
102

5   = 6   

 b1 = 
SSxy

SSxx
  = 

7
10  = 0.7 

 b0 = y– - ∫1
^  x– = 

10
5   - 0.7

15
5   = -0.1 

 
 SSE = SSyy - b1SSxy =            -                      =            

 s2 = 
SSE
n-2  = 

          

            ‡                       

 s = s2  ‡                       

 r2 = 1 - 
SSE
SSyy

  = 1 - 
          

            =                       

 r = r2 ‡                       

 Sb1
= 

s

SSxx

  = 
                  

                    ‡                         

 Sb0 
= s SSE =                                             =                       
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 tb1
= 

b1

 sb1

  = 
                  

                   ‡                       

 tb0
= 

b0

 sb0

  = 
                  

                   ‡                       

 
 

Regression Statistics     
Multiple R      
R Square      
Adjusted R 
Square 

     

Standard 
Error 

     

Observations      
      

ANOVA      
 df SS MS F  

Regression      
Residual      
Total      

      
 Coefficients Standard 

Error 
t Stat   

Intercept      
X      
 
 
OK back to the task at hand. 
 
Now, recall that when we measured a sample mean, we used the sample information to 
test a hypothesis about the population mean. Here, we will test a hypothesis about the 
parameter ∫1 to answer the following question: 
 
Question 1: Does y  depend on x  at all? Note that, if y did not depend on x, then ∫1 
would be zero. Thus, let us test the following hypothesis: 
 H0: ∫1 = 0 
 H1: ∫1 ≠ 0  or  H1: ∫1 > 0 or H1: ∫1 < 0. 
 
To test these at a given significance level, we use the above information about the 
sampling distribution of b1 to obtain a test statistic, and use the t-distribution based on 
(n-2) degrees of freedom. 
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Testing Model Utility 
 
Test Statistic 

  t = 
b1- Hypothesized value of ∫1

 sb1

   = 
b1

sb1

  = t-stat on Excel 

where   sb1
 =  

s

SSxx

  = Standard error on Excel Table 

 
Two-Tailed 
H0: ∫1 = 0 
H1: ∫1 ≠ 0 

One-Tailed; Upper 
H0: ∫1 = 0 
H1: ∫1 > 0   

One-Tailed; Lower 
H0: ∫1 = 0 
H1: ∫1 < 0 

 
Rejection Regions (tå and tå/2 are based on (n-2) degrees of freedom) 
 

-tå/2 tå/2  tå  -tå  
  
Using the p-Statistic: 
 
Two-Tailed Tests 
Use it as is 

One-Tailed Tests: 
Divide it by 2 

 
 
Worksheet 2 - Testing the Regression Coedfficient (t Test) 
The following data suggests a relationship between famy income and SAT scores. 
 

Parents' Income ($1000) 5 15 25 35 45 55 65 
Verbal SAT 350 377 402 416 429 437 446 

Source: The College Board/The New York Times, March 5, 1995, p. E16. 
 
Test, at the 95% level of significance, whether SAT scores go up as family income 
increases. Interpret the coefficient b1 and also the result of the hypothesis test. 
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Regression Statistics    
Multiple R 0.97214532    
R Square 0.94506653    
Adjusted R Square 0.93407983    
Standard Error 8.86364968    
Observations 7    
     
ANOVA     

  df SS MS F 
Regression 1 6758.03571 6758.03571 86.0191836 
Residual 5 392.821429 78.5642857  
Total 6 7150.85714     
     

  Coefficients Standard Error t Stat P-value 
Intercept 353.767857 6.75243248 52.3911728 4.7898E-08 
x 1.55357143 0.16750723 9.27465275 0.00024501 
 
 H0: ______________ 
 Ha: ______________ 
 df = n - 2 = ______ 
 
Rejection region: 
 critical t = _________ 

  
 
 t-statistic: __________       In rejection region?  ______ 
  
 Conclusion: ___________________________________ 
 
Interpret ting result of hypothesis test: 
 
 
  

Interpreting coefficient b1:  
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Note: If t did not fall in the rejection region, that would not have meant that we must 
accept H0: ∫1 = 0. All it means that we cannot conclude that ∫1 is positive. 
 
Guess what: The corresponding p-value (which works as is for the two-tailed test) is 
right next to it! Thus, if we are testing at the 95% confidence level, å = 0.05 and the p-
value is 0.03, we can safely reject H0 since the p-value is smaller than å.  
For the one-tailed test, we use half the given p-value to estimate å, and so  
 p ‡ .000 24501/2 ‡ 0.000 1225 
so we can certainly reject H0 with a signficance level of  
 1 - 0.000 1255 = 0.999 8745, 
or 99.99%. 
 
Excel Note: We can compute the 1-tailed or 2-tailed p-value from any t-statistic using the 
formula 
 =TDIST(t-stat. ,df , Number of tails (1 or 2)) 
For instance, the p-value for the above test is 
 =TDIST(52.3911728,5,1) 
 
We are ready for the next question. 
 
Question 2  I got a slope of b1. What is the confidence interval for that answer? 
 
To answer this question, we use knowledge we already have: if a random variable X is 
normally distributed with population mean µ and standard deviation ß, then if we take a 
sample of X, the (1-å) confidence interval for µ is x– ± zå/2ß/ n . The reason this works 
is that the sampling distribution of x– is normal with mean µ and standard deviation ßX— = 

ß/ n. But here, we saw  above that the sampling distribution of b1 is always normal with 
mean ∫1 and standard deviation Sb1

. Thus, we get the following confidence interval test: 

 
How to find the (1-å) Confidence Interval for the Slope ∫ 1 
We can be 100(1-å)% certain that ∫1 is in the interval 
 
  b1± tå/2 Sb1

 
 
where tå/2 is based on (n-k-1) degrees of freedom. (For simple regression, k = 1, so use 
n-2 degrees of freedom.) 
 
Excel  
� The quantity Sb1

 is the standard error in the slope, and appears in the X Variable 1 
row under “Standard Error.” 

� To obtain t.025 without using a table, enter =TINV(.05, DF) 
 



 23 

Worksheet 3 – Confidence Interval for the Slope 
Use the Excel printout of the preceding worksheet to compute a 95% confidence interval 
for the slope. 
 b1 = _________         df = _________          
  

 tå/2 = t___ = _________ 
 
 Sb1

 = _________ 

 CI =                       ±                                                  

      =                       ±                       

     = [                      ,                      ] 
Interpretation:  
 
 
 
 
Question 3: What is the F-statistic and what does it tell us? 
The F-statistic is defined to by 

 F = 
MSR
MSE  = 

SSR/k
SSE/(n-k-1)  

If ∫1 = 0, then  
 SSyy ‡ SSE  Since the regression line should be close to horizontal 
Therefore 
 SSR = SSyy - SSE  
should be close to 0, resulting in a small value of F. The probability distribution for F 
assuming that ∫1 = 0 is known, and  depends on two degrees of freeedom: k = 1 in the 
numerator and n-k-1 = n-2 in the denominator.  Some of its critical values are given by 
the following table (a more complete table appears at the end of this booklet): 
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Critical Values of F (å = 0.05)  
Excel: =FINV(0.05,dfn,dfd) 

df Numerator →     
Denomi-  1 2 3 4 5 6 

nator 1 161.446 199.499 215.707 224.583 230.160 233.988 
↓ 2 18.513 19.000 19.164 19.247 19.296 19.329 

 3 10.128 9.552 9.277 9.117 9.013 8.941 
 4 7.709 6.944 6.591 6.388 6.256 6.163 
 5 6.608 5.786 5.409 5.192 5.050 4.950 
 6 5.987 5.143 4.757 4.534 4.387 4.284 
 7 5.591 4.737 4.347 4.120 3.972 3.866 
 8 5.318 4.459 4.066 3.838 3.688 3.581 
 9 5.117 4.256 3.863 3.633 3.482 3.374 
 10 4.965 4.103 3.708 3.478 3.326 3.217 
 11 4.844 3.982 3.587 3.357 3.204 3.095 
 12 4.747 3.885 3.490 3.259 3.106 2.996 
 13 4.667 3.806 3.411 3.179 3.025 2.915 
 14 4.600 3.739 3.344 3.112 2.958 2.848 
 15 4.543 3.682 3.287 3.056 2.901 2.790 
 16 4.494 3.634 3.239 3.007 2.852 2.741 
 17 4.451 3.592 3.197 2.965 2.810 2.699 
 18 4.414 3.555 3.160 2.928 2.773 2.661 
 19 4.381 3.522 3.127 2.895 2.740 2.628 
 20 4.351 3.493 3.098 2.866 2.711 2.599 

  
Note: A slight disadvantage of the F-statistic is that it does not differentiate between 
positive and negative slopes. Therefore, we only use it with an alternate hypothesis of the 
form 
 Ha: ∫1 ≠ 0 
 
Worksheet 4 - Testing the Regression Coedfficient (F Test) 
Life expectancies at birth in the United States for people born in various years is given in 
the following table. You can download this data at  
 http://www.zweigmedia.com/qm203/ 
under “Life Expectancy Data”. 

 
 

Year Since 1920 0 10 20 30 40 50 60 70 78 
Life Expectancy 54.1 59.7 62.9 68.2 69.7 70.8 73.7 75.4 76.7 

Source: Centers for Disease Control and Prevention, National Center for Health Statistics, National 
Vital Statistics Report, Feb. 7, 2001. http://www.cdc.gov/nchs/fastats/pdf/nvsr48_18tb12.pdf 

 
Use an F-test to determine, at the 95% level of significance, whether the life-expectancy 
has been changing with time. Interpret the coefficient b1 
 

Regression Statistics     
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Multiple R 0.97369201     
R Square 0.94807614     
Adjusted R Square 0.94065844     
Standard Error 1.85070591     
Observations 9     
      
ANOVA      

  df SS MS F Significance F 
Regression 1 437.773102 437.773102 127.812772 9.4773E-06 
Residual 7 23.9757864 3.42511235   
Total 8 461.748889       
      

  Coefficients Standard Error t Stat P-value Lower 95% 
Intercept 57.0236538 1.14367512 49.8600107 3.4175E-10 54.3192938 
x 0.27370703 0.02421022 11.3054311 9.4773E-06 0.21645898 
 
 H0: ______________ 
 Ha: ______________ 
  
 df (numerator) = k = ______   df(denominator) = n - k - 1 = ________ 
  

 Fcritical = _______ 
 Rejection region: 

  
 
 F-statistic: __________       In rejection region?  ______ 
  
 Conclusion: ___________________________________ 
 
Interpret ting result of hypothesis test: 
 
 
  

Interpreting coefficient b1:  
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Note: The “p-value” for F is listed above as Significance F, and gives the signficance 
with which we can reject  Note that it is the same as the p-value for the t-statirci 
associated with ∫1. (Why?) 
 
Exercises for this topic: 
p. 575 #26. First, compute all the terms in the Excel Sheet by hand. Then answer 
questions a-c. Finally, check your calculations by doing an Excel regression analysis 
 
p. 576 #30 Excel only 
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Topic 4  
Using Regression to Predict y from x    
(Based on §14.6 in the book) 
 
Let us go back to the original scenario: x = monthly advertising expenditure in $100, y = 
monthly sales revenue in $1000. We can already predict y by using the formula for ŷ. 
What we don't have is a confidence interval. Here are two questions we can ask:  
 
Question 1 What is a confidence interval for my average sales revenue if I pay $3500 (x 
= 3.5) for advertising in a month? That is, find a conrfidence interval for y–, the 
population mean of y, given a specific value of x. This confidence interval is called a 
confidence interval (CI) for the mean of y. 
 
Question 2 What is a confidence interval for my sales revenue in a particular month if I 
pay $3500 per month (x = 3.5) for advertising? That is, find a conrfidence interval for y, 
a particular value of y, given a specific value of x. This confidence interval is called a 
prediction interval (PI) for an individual response of y. 
 
Question What is the difference between these two confidence intervals? 
Answer We are less certain about a particular month's revenues than about the mean 
revenue. Therefore, the confidence interval for a particular value of y will be larger.  
 
All we need is a confidence interval for this prediction. 
 
Question Wait a minute! Since y = ∫0 + ∫1x + œ, and the standard deviation œ can be 
estimated by s, why not just use that s to give us a confidence interval for y? 
Answer If we knew the values of ∫0 and ∫1 exactly, that would be fine. But we don't 
know those values; we only have estimates b0 and b1 of those values. Thus, we can't use 
s to form our confidence interval.  
 
Note The tiniest error in b0 or b1 can have disastrous consequences for long-term 
prediction (illustration in class). Thus, the standard deviation and resulting confidence 
interval for our prediction of y from a given value of x should depend on how far that 
value of x is from the mean x–.  
 
Here are the underlying facts:  

• If we use the regression value ŷ to predict y– at a specified value xp of x, then the 
standard deviation of the error is given by 

  ß 
(y-y–) = ß

1
n + 

(xp-x–)2

SSxx
  

 where ß is the standard deviation of œ. 
 

• If we use the regression value ŷ to predict y at a specified value xp of x, then the 
standard deviation of the error is given by 
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  ß
 
(y-ŷ )

 = ß 1 + 
1
n + 

(xp-x–)2

SSxx
  

 

If we now recall that ß ‡ SYX, where SYX
2 = 

SSE
n-2 , we see that our (1-å) confidence 

intervals for y–  and yp are given as follows: 
 
Predicting y – and y  from a given x  
 
A (1-å) confidence interval for y– is given by  

 ŷp ± tå/2s
1
n + 

(xp-x–)2

SSxx
   CI for the Mean of y  

 
A (1-å) confidence interval for yp is given by  

 ŷp ± tå/2s 1 + 
1
n + 

(xp-x–)2

SSxx
  PI for an Individual Response of y 

 
In both cases,  
xp is the given value of x 
ŷp is the resulting value of y (given by the regression equation)  
tå/2 is based on (n-k -1) = (n-2) degrees of freedom. 
 
Excel: 
� To obtain t.025 without using a table, enter =TINV(.05, DF) 
�  To obtain SSxx from the Excel output we can use 

 SSxx = 
⎣
⎢
⎡

⎦
⎥
⎤s

sb1

 2

 

 

Note: To get the above formula for SSxx, we use the formula sb1
 = 

s2

SSxx
 , giving  

 SSxx = 
⎣
⎢
⎡

⎦
⎥
⎤s

sb1

 2

. 

 
Worksheet 1 — Mean and Individual Predicted Values 
The following graph shows approximate annual sales of new in-ground swimming pools 
in the U.S.2 

                                                
2 2001 figure is an estimate. Source: PK Data/New York Times, July 5, 2001, p. C1. 
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2001 figure is an estimate. Source: PK Data/New York Times, July 5, 2001, p. C1. 

 
Here is the underlying data: 
 

Year Since 1995 1 2 3 4 5 6 
Number of Pools 125 135 140 150 155 160 

 
Use regression to compute confidence intervals for both the predicted value of y and the 
mean value of y in 2003. Are both results meaningful in the contect of this problem? 
 
Step 1 Do the regression: 
Taking x = year since 1995 and y = number of pools, we obtain the following output 
from Excel: 
 

Regression Statistics    
Multiple R 0.99231497    
R Square 0.984689    
Adjusted R Square 0.98086124    
Standard Error 1.82574186    
Observations 6    
     
ANOVA     

  df SS MS F 
Regression 1 857.5 857.5 257.25 
Residual 4 13.3333333 3.33333333  
Total 5 870.833333     
     

  Coefficients Standard Error t Stat P-value 
Intercept 119.666667 1.69967317 70.4056925 2.4386E-07 
X Variable 1 7 0.43643578 16.0390149 8.8363E-05 
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Step 2: Do the calculations for the CI and PI: 

 Regression equation: ŷ  =                                           

 xp = _________  ŷp = _________  
  
 n = ________  x– = _________ 
  

 SSxx = 
⎣
⎢
⎡

⎦
⎥
⎤s

sb1

 2

 = 
⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤                    

                    

 2

= ______________ 

 tå/2 = ___________  SYX = __________ 
  

 
1
n + 

(xp-x–)2

SSxx
  =  

1

   
  + 

______ - _______ 2

               
 = _____________ 

 
1
n + 

(xp-x–)2

SSxx
        = ___________________ 

 1 + 
1
n + 

(xp-x–)2

SSxx
  = ___________________ 

 CI:  ŷp ± tå/2s
1
n + 

(xp-x–)2

SSxx
   

=                       ±                                                               

      =                       ±                       

     = [                      ,                      ] 
 

 PI:  ŷp ± tå/2s 1 + 
1
n + 

(xp-x–)2

SSxx
   

=                       ±                                                               

      =                       ±                       

     = [                      ,                      ] 



 31 

 
Setting this up on the Excel Sheet Here is the PI calculuation: 

 
If you use formulas for everything, then you can change the value of xp and automatically 
see the effect on the confidence interval. 
 
 
 
Interpretation: 
 
 
 
 
Comments on CI for y–: 
 
 
 
 
 
Exercises for this topic: 
p. 581 #32 
 
 

Excel Assignment 1: Earth Temperature 

 
Source: Climatic Research Unit, University of East Anglia 

http://www.cru.uea.ac.uk/ 
 
Go to 
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  http://www.zweigmedia.com/qm203/ 
and download the Excel spreadsheet called Surface Temperatures. 
A. Obtain residual plots and use then to judge the extent to which the regression 

assumptions are met. Comment on your conclusions.  
B. Test for evidence of first order autocorrelation. 
C. Perform a linear regression on the data and give the regression model. Important: 

First rescale the year data so that x = 0 corresponds to 1950. (The regression 
computations are more accurate for small values of x.)  

D. Interpret the slope of the regression equation. 
E. Perform a hypothesis test at the 95% significance level to test whether temperature is 

increasing with time. 
F. Obtain a 95% PI for x = 70. Interpret the result. 
G. Repeat Steps A–F using the 1980–2006 data only . (Take x = 0 to represent 1980 

here.) 
H. Compare slopes of the regression equations for 1880-2006 and 1980–2006. What does 

this comparison suggest about global warming? 
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Topic 5 
Assumptions for Simple Linear Regression    
(§14.8 in the text) 
We list the assumptions we are making when we perform regression analysis: 
 
Assumptions for Simple Linear Regression 
(§11.4–11.6 in text) 
 
1. Normalcy:  
We assume a relationship of the form y = ∫0 + ∫1x + œ, where œ is a normal random 
variable with mean 0 and variance ß2. In practice, we require that the residuals are more-
or-less normally distributed.  
 
2. Homoscendacity: 
We assume that œ has the same standard deviation ß at every value of x. 
 
3. Independence of errors  
The values of each measurement of y (and hence œ) are independent of each other: getting 
a certain value for one measurement does not effect the probability of the others. (Think, 
for example, of the DOW.) 
 
Question Why are these assumptions necessary? 
Answer: Although we can always construct a regresion line without these assumptions 
(just obtain the line that minimizes SSE), we cannot say that b0 and b1 are unbiased 
estimators of ∫0 and ∫1 without them. Nor can we make statitical inferences (see later) 
about ∫0 and ∫1 without these assumptions.  
 
Illustration of Violations of the Assumptions 
We look at scatter plots of the residuals y - ŷ versus x.  
Note We can have Excel plot them for us as an option when we do regression. 
 
Worksheet 1 
Identify what, if any, violations are present in the given residual plots: 
 

A 

-10

- 5

0

5

10

15

 

B 

- 1

-0.5

0

0.5

1

 

C 

-0.1

0

0.1

0.2

0.3
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D 

0

0.5

1

1.5

2

 

E 

- 1

-0.5

0

0.5

1

1.5

z

 

F 

-300

-200

-100

0

100

200

300

z

 
 

 
There is a very precise way of detercting a certin kind of violation of Assumption 3 
(Independence) called first order autocorrelation. This only makes sense in time-series 
data (that is, data where the x-axis measures time) such as the DOW or the price of gold, 
etc. If the scores in a time-seris plot are autocorrelated, it means that each residual 
depends positively (positive autocorreplation) or negatiely (negative autcorrelation) on 
the preceding score. We measure this phenomenon using a statstic called the Durbin-
Watson statistic: 
 
Durbin-Watson Statistic 

 d = 
£(ei-ei-1)

2

£ei
2  = 

£(ei-ei-1)
2

SSE   

where ei is the residual at time i.  
Only makes sense for time-series data. 
 
Properties: 
(1) 0 ≤ d ≤ 4† 
(2) d ≈ 2 is reiduals are uncorrelated. 
(3) For positive correlation, d < 2, and approaches 0 for strong positive correlation. 
(4) For negative correlation, d > 2 and approaches 4 for strong negative correlation. 
 
Minitab: Check the Durbin-Watson box under regression options. 
 
We do a hypothesis test: 
H0: There is no positive autocorrelation 

                                                
† Why? Look at the numerator: (ei-ei-1)2 = ei

2 - 2eiei-1+ ei-1
2  ≤ ei

2 + 2|ei|ei-1|+ ei-1
2. However, 

in general 2ab ≤ a
2
 + b

2 (which comes from the inequality (a-b)
2
 ≥ 0). This gives  

 (ei-ei-1)2 ≤ ei
2 + ei

2 + ei-1
2+ ei-1

2  
Therefore, summing from 2 to n: 

£(ei-ei-1)2 ≤ £ei
2 +£ ei

2 + £ei-1
2+ £ ei-1

2 ≤ 4£1 ≤ i ≤ n ei
2 = 4SSE 

(Note that the sums on the left-hand side go from 2 to n, whereas the sum on the right-hand side groes from 
1 to n and is therefore larger in general). This gives the result 
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Ha: There is positive autocorrelation (That is, ei = mei-1 + k for some m > 0 and k) 
Reject H0 if d is in the left-hand rejection region shown shaded (yes, positive 
autocorrelation) 
Accept H0 if d is in the right-hand portion of the rejection region shown (not only is there 
no positive autocorrelation evidenced, but there is evidence of negative autocorrelation, 
meaning we iaccept the null-hypothesis) 
If d is in the “in-between” region, the test is inconclusive (fail to reject or accept) 
 
 0 (+) 2 (–) 4 

 
 
Testing for Negative autocorrelation: 
Replace dL by 4-dU and dU by 4 - dL and proceed as above, but do the opposite: the 
right-hand region gives negative autocorrelation, and the left-hand region gives none. 
 
We can look up the lower and upper limits dU and dL in table E.10 in the textbook, using 
k = 1 (k is the number of independent variables we are using in regression). 
 
  
              
Question Where do the numbers in the table come from? 
Answer What Durbin & Watson did was to compute the sampling distribution of D. The 
rejection regions correspond to the tail-areas under the curve with an area of 0.05. It is 
not built into Excel, so we need the table at hand. Here is a partial table for å = .05 (the 
whole one is in the back of the book): 
 

Critical Values for Durbin-Watson (å = 0.05) 

 
k = 1 k = 2 k = 3 k = 4 k = 5 

nr dL dU dL dU dL dU dL dU dL dU 
15 1.08 1.36 0.95 1.54 0.81 1.75 0.69 1.98 0.56 2.22 
16 1.11 1.37 0.98 1.54 0.86 1.73 0.73 1.94 0.62 2.16 
17 1.13 1.38 1.02 1.54 0.90 1.71 0.78 1.90 0.66 2.10 
18 1.16 1.39 1.05 1.54 0.93 1.70 0.82 1.87 0.71 2.06 
19 1.18 1.40 1.08 1.54 0.97 1.69 0.86 1.85 0.75 2.02 
20 1.20 1.41 1.10 1.54 1.00 1.68 0.89 1.83 0.79 1.99 

 
 



 36 

Worksheet 2 Computing the Durbin-Watson Statsitic 
Here is some more data on the households with cable (y =  millions of China households 
with cable, and x is the year since 2000. You can download this data at  
 http://www.zweigmedia.com/qm203/ 
under “China Cable Data”. 
 
Test for first order autocorrelation: 
 

Year 
x  

Observed 
y  

Residual 
e 

(Delta-R)2 

(e i - e i-1)
2 

-4 50   
-3 55   
-2 57   
-1 60   
0 68   
1 72   
2 80   
3 83   
4 85   
5 87   
6 95   
7 101   
8 103   
9 111   
10 114   
11 118   
  Sum:    

 
Step 1: Compute the regression line (Use an excel data analysis for a quick answer) 
Step 2: Have Excel show the residualsfor you.. 

Step 3: Compute D = 
Sum
SSE =  

               

                =                           

Step 4: Perform the hypothesis tests: 
 H0: ______________________________________ 
 Ha: ______________________________________ 
 dL = __________ dU = __________ 
 Conclusion: _______________________________ 
 
 H0: ______________________________________ 
 Ha: ______________________________________ 
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 dL = __________ dU = __________ 
 Conclusion: _______________________________ 
 
 
Execicses for this topic 
Go to 
 http://www.zweigmedia.com/qm203/ 
and download the Surface Temperatures spreadsheet. 
(1) Use the data for 1980–2006 only: Plot the residuals versus x and determine if there are 
any violations of model assumtions.  
(2) Compute the Durin-Watson Statistic to determine whether there is evidende of 
autocorrelation. 
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Topic 6 
Multiple Regression: The Model & Inferences about the ∫  Parameters   
(Based on §15.1–15.3 and part of 15.5 in book) 
 
A linear function of k variables is a function of the form   
 y = ∫0 + ∫1x1 + ∫2x2 + ... + ∫kxk. 
a probabilistic linear function of k variables has the form  
 y = ∫0 + ∫1x1 + ∫2x2 + ... + ∫kxk + œ, 
where œ is normally distributed and independent of the values of the xi. 
 
Worksheet 1 - Interpreting the coefficients: 
Here is an example of a linear function of two variables: Chrysler's percentage share of 
the US mini-van market in the period 1993–1994 could be approximated by the linear 
function 
 c(x1, x2, x3) = 72.3 - 0.8x1 - 0.2x2 - 0.7x3, 
where x1 is the percentage of the market held by foreign manufacturers, x2 is General 
Motors' percentage share, and x3 is Ford's percentage share.3 
 
Interpretation of ∫1:  
For every 1-unit increase in x1, y ___________ by _________ units.  
In other words, Chrysler's percentage share of the US mini-van market in the period 
1993–1994 ______________________________________________________________ 
 
________________________.  
 
Interpretation of ∫2:  
For every 1-unit increase in x2, y ___________ by _________ units.  
In other words, Chrysler's percentage share of the US mini-van market in the period 
1993–1994 ______________________________________________________________ 
 
________________________. 
 
Interpretation of ∫3:  
For every 1-unit increase in x3, y ___________ by _________ units.  
In other words, Chrysler's percentage share of the US mini-van market in the period 
1993–1994 ______________________________________________________________ 
 
________________________. 
 

                                                
3 The model is your instructor's. Source for raw data: Ford Motor Company/The New York Times, 
November 9, 1994, p. D5. 
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Obtaining the best-fit coefficients for this kind of model is called multiple linear 
regression. The procedure to compute the regression coefficients b0, b1, ... by hand 
involves the use of matrix algebra, and is beyond the scope of this course. Therefore, we 
will use Excel output exclusively (sometimes aided by PHStat). 
 
Worksheet 2 — Basics of Multiple Regression 
 
Go to 
 http://www.zweigmedia.com/qm203/  
and download the Excel spreadsheet for the Multiple Regression Example on Radio and 
TV (from Exercise 12.25 in the textbook, but with different data). Since the textbook 
does not bother to say exactly what the variables are, we are forced to invent them: Take 
 y = Number of Psychic Crystal pendants sold per day 
 x1 = Minutes per day in late-nite TV and radio advertising 
 x2 = Number of half-page ads per day in the local newspapers 
 
(a) Write down the probabilistic model, the regression equation, and interpret the slopes. 
(b) Find a 95% CI for the population slope ∫1. 
(c) Determine at the 95% level of significance whether sales go up as newspaper 
advertising goes up. 
(d) Interpret the p-values for the coefficients ∫1 and ∫2. On this basis, which explanatory 
variables should be retained? 
 

y 
Sales 

x1 
Radio/TV 

x2 
Newspaper 

y 
Sales 

x1 
Radio/TV 

x2 
Newspaper 

563 0 40 1295 45 45 
308 0 40 1045 50 0 
384 25 25 1076 50 0 
436 25 25 1257 55 25 
362 30 30 1359 55 25 
677 30 30 1199 60 30 
764 35 35 1520 60 30 
996 35 35 1648 65 35 
852 40 25 991 65 35 
680 40 25 1439 70 40 
656 45 45 1214 70 40 

 
Here is the resulting regression output: 
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Regression Statistics     
Multiple R 0.8311521     
R Square 0.6908139     
Adjusted R Square 0.6582679     
Standard Error 233.86664     
Observations 22     
      
ANOVA     

  df SS MS F Significance F 
Regression 2 2321834.06 1160917 21.22583 1.44E-05 
Residual 19 1039178.53 54693.61   
Total 21 3361012.59       
      

  Coefficients Standard Error t Stat P-value Lower 95% 
Intercept 155.422 186.555473 0.833114 0.415131 -235.043 
RadioTV 16.866047 2.58935264 6.513615 3.07E-06 11.44647 
Newspaper 1.9378349 4.36134205 0.444321 0.66183 -7.19056 
 
(a) Probabilistic model:  
  y = ________________________________________________ 
Regression equation:  
  ŷ = b0 + b1x1 + b2x2 

  ŷ = ________________________________________________ 
Interpretation of b1:  
 
 
 
 
Interpretation of b2: 
 
 
 
 

(b) Preparation for doing hypothesis CI for ∫1 at the 95% significance level: 
 n = ________________   k = ________________ 
  

 df = n-k-1 = ________________  tå/2 = _______________ 
 
 Sb1

 = ______________ 
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 CI = b1± tå/2 Sb1
  

=                       ±                                                               

      =                       ±                       

     = [                      ,                      ] 
 
(c)  H0: ______________ 
 Ha: ______________ 
 df = n - k-1 = ______ 
 
Rejection region: 
 critical t = __________ 

  
 
 t-statistic: __________       In rejection region?  ______ 
  
 Conclusion: ___________________________________ 
 
Interpret ting result of hypothesis test: 
 
 
 
  

(d) p-value for ∫1 = ____________ 
Interpretation: 
 
 
 
 

p-value for ∫2 = ____________ 
Interpretation: 
 
 
 
 
 
Conclusion: 
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Variability of the Random Term 
The standard deviation ß of œ has an unbiased estimator for ß2 given as follows. 
First, the number of degrees of freedom is given by 
 dy = n - # ∫-terms = n - (k+1) = n-k-1 
Then the unbiased estimator is 

 s2  = 
SSE

 n-k-1  = MSE (Mean Square Error) 
where 
 SSE = sum of squares of errors = £(yi-yi

^  )2 
s is called the estimated standard error of the regression model and appears under 
"Regression Statistics" whereas its square, MSE appears in the ANOVA section.  
 
Interpretation of s  
Just as with simple regression, we can make the following inference: Around 95% of the 
observations will lie within 2s of the predicted value ŷ . 
 
Coefficients of Multiple Determination 
As we saw for simple regression, the proportion of the total sample variation that can be 
attributed to the independent variables is given by 
 

 r2 = 
SSyy - SSE

SSyy
  = 

SSR
SST  

The textbook calls this quantity. As for simple regression, r2 gives the proportion of the 
sample variation in y attributable to the values of the independent variables in a linear 
relationship. A disadvantage of r2 is that it cannot be used to compare models with 
different numbers of explanatory variables. The larger the number of variables, the 
smaller SSE tends to become. In fact, it is possible to construct models with n - 1 

variables that result in an exact fit of the regression models, and hence SSE = 0, so that r2 

= 1. The adjusted r2 is defined by the following formula [which scales the quantity 1-r2 
by the ratio (n-1)/)n-k-1)]: 

 radj
2 = 1 - ⎣⎢

⎡
⎦⎥
⎤(1-r2)

n-1
n-k-1    

 

Question: How do we interpret the adjusted r2? 
Answer: Suppose, for instance, that radj

2 = .89. We can say that “if we take model size 
into account, 89% of the variation in y is explained by the values of the independent 
variables.”  
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Answer: Suppose, for instance, that radj
2 = .89. We can say that “if we take model size 

into account, 89% of the variation in y is explained by the values of the independent 
variables.”  
 
Exercises for this topic: 
p. 632 #5, 15 
For both of these, also perform a t-test for individual significance for the coefficients of 
x1 and x2. 
 



 44 

Topic 7 
Using F-statistics: Evaluating the Whole model and Portions of the Model   
(§15.5 and16.2 in the book) 
 
In Topic 3 we saw that a F statistic could also be used to evaluate a simple linear 
regression. If we look at its definition,  
 

 F = 
(SSyy- SSE)/k
SSE/[n-(k+1)]  = 

SSR/k
SSE/(n-k-1)   

 
we see that it related to the fit of the entire model. To understand its meaning, recall that 
 
 SSyy = £ (y - y–)2 and SSE = Sum of  £(y - ŷ)2 
 
Therefore, if ∫1 = ∫2 = ... = ∫k = 0, then 
 SSyy ‡ SSE  
(Since the regression equation should be close to a constant, so that y– ‡ ŷ ‡ that 
constant). 
Therefore 
 SSR = SSyy - SSE  ‡ 0, 
 
and so F is close to zero. In fact, its sampling distribution  (assuming ∫1 = ... = ∫k = 0) 
is the known distribution tabulated at the end of this booklet . 
 
The F-Statistic for Multiple Regression: Testing the Usefulness of the Overall Model 
The F-statistic is used to test the following hypothesis: 
  H0: ∫1 = ∫2 = ∫3 = ... = ∫k = 0 

  Ha: At least one of these coefficients is non-zero. 
Test statistic:  

 F = 
(SSyy- SSE)/k
SSE/(n-k-1)  = 

SSR/k
SSE/(n-k-1)  = 

R2/k
(1-R2)/(n-k-1)

  

 = 
Sum of Squares(Regression)/df(Regression)

Sum of Sqaures(Error)/df(Error)   = 
Mean Square(Model)

Mean Sqare(Regression)  
 
Using F:  
Compare the F-statistic to the one in the table with  k df in the numerator & [n-(k+1)] df 
in the denominator. If F > Få, then we reject H0. 
 
Note: Rejecting H0 does not mean that the model is the best one; another model might 
give an even better confidence level. 
 
Some terminology for the terms in the Excel table: 
ANOVA      
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 df SS MS F Significance F 
Regression df (Regression) SSR (Regression) MSR MSR/MSE  
Residual df (Error) SSE (Error) MSE   
Total dfM + dfE SST = SSM + SSE    

 
 
Workbook 1 _ Using the F-Test to Evaluate the Entire Model 
Fill in the missing values of the following Excel sheet, and compute the overall 
usefulness of the given regression model at the 95% confidence level. 
 

SUMMARY OUTPUT     
      

Regression Statistics     
Multiple R 0.78881784     
R Square 0.62223358     
Adjusted R Square 0.54128363     
Standard Error 8.55161132     
Observations 18     

      
ANOVA      

 df SS MS F Significance F 
Regression 3 1686.37453    
Residual 14 1023.82079    
Total 17 2710.19531    

      
 Coefficients Standard 

Error 
t Stat P-value Lower 95% 

Intercept -72.848775 43.6506747 -1.6689037 0.1173366 -166.47024 
X1 -0.0662404 0.18831924 -0.351745 0.73026749 -0.4701453 
X2 85.7340025 22.6308238 3.78837303 0.00199612 37.1956697 
X3 -0.0222909 0.02994571 -0.7443784 0.46895881 -0.0865182 
 
Missing values: 

 MSR = 
SSR
df(R)  = 

                  

                   ‡                       

 MSE = 
SSE
df(E)  = 

                  

                   ‡                       

 F = 
MSR
MSE  = 

                  

                   ‡                       

 Significance F (p-value) =FDIST(F-stat, df1, df2 ) =                       
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Evaluating the Model 
 Linear Model: y = ________________________________ 
 

 H0: ________________________________ 
 Ha: _________________________________ 
  
 df (numerator) = k = ______   df(denominator) = n - k - 1 = ________ 
  

 Fcritical = ________ 
 Rejection region: 

  
 
 F-statistic: F = __________ 
 
 In rejection region?  ______ 
  
 Conclusion: ___________________________________ 
 
Interpret ting result of hypothesis test: 
 
 
  
 
Interpreting the F significance value: 
 
 
 
 
 
Testing a Portion of a Model 
Suppose we want to test a bunch of terms at once (this was more reliable than testing 
them one-at-a-time, due to type 1 error accumulation). To do this, we compute an F-
statistic showing the percentage of new errors caused by reducing the model as follows. 
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Testing a Portion of the Model 
Do two regression analyses: 
Reduced Model: y– = ∫0 + ∫1x1 + ... + ∫gxg 
Complete (larger) Model: y– = ∫0 + ∫1x1 + ... + ∫gxg +  ... + ∫kxk 
 
 H0: ∫g+1 =  ... = ∫k = 0 

 Ha: at least one of them is not zero 

  F  = 
(SSEpartial - SSEcomplete)/[k-g]

SSEcomplete/[n-(k+1)]  . 

 
Rejection Region: F > Få, based on (k-g) numerator and n-(k+1) denominator df. 
n = # data points 
k-g = number of ∫'s tested 
 
Interpretation: The null hypothesis asserts that the additional explanatory variables 
xg+1, xg+2, ..., xk do not contribute significantly to the usefulness of the model. In other 
words, the reduced model is preferable. Rejecting it implies that the additional variables 
do contribute significantly to the usefulness of the model. 
 
Note: If the two models differ by a single term, then the F-test can be replaced by a t-test: 
Just do the regression analysis for the larger model, and test for the extra coefficient. 
 
Worksheet 2 — Testing a portion of a model 
Here is a model for the selling price of a home (y) as a function of the list price (x1), the 
number of bedrooms (x2), and the time on the market in weeks (x3). Use a comparison of 
models to determine whether x2 and x3 contribute significantly more than x1 alone.  
 

Reduced Model  Complete Model   
      

Regression Statistics  Regression    Statistics  
Multiple R 0.99474985  Multiple R 0.99515812  
R Square 0.98952725  R Square 0.99033968  
Adjusted R 
Square 

0.98917816  Adjusted R 
Square 

0.98930464  

Standard Error 36747.5119  Standard Error 36532.137  
Observations 32  Observations 32  

      
ANOVA   ANOVA   

 df SS  df SS 
Regression 1 3.8278E+12 Regression 3 3.8309E+12 
Residual 30 4.0511E+10 Residual 28 3.7369E+10 
Total 31 3.8683E+12 Total 31 3.8683E+12 

      
 Coefficients Standard Error  Coefficients Standard Error 
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Intercept -26306.993 10738.6428 Intercept -7477.8395 20471.9887 
X1 0.99674558 0.01872148 X1 0.99787257 0.0189959 

   X2 -2663.1189 5370.9791 
   X3 -534.62597 421.174382 

 
 Complete Model: y = ________________________________ 
 
 Reduced Model: y = ________________________________ 
 

 H0: ________________________________ 
 Ha: _________________________________ 
  
 df (numerator) = k-g = ______   df(denominator) = n - k - 1 = ________ 
  

 Fcritical = ________ 
 Rejection region: 

  
 

 F-statistic: F = 
(SSEpartial - SSEcomplete)/[k-g]

SSEcomplete/[n-(k+1)]   

 

   = 
[                    -                   ]/                   

                  /                   
  

   ‡ 
                  

                   ‡                       

 
 In rejection region?  ______ 
  
 Conclusion: ___________________________________ 
 
Interpret ting result of hypothesis test: 
 
 
 
 
What does the result suggest about housing prices? 
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FYI: Here is a Excel plot of price vs. number of bedrooms for the data used above.  

0

1

2

3

4

5

6

7

$0 $500,000 $1,000,000 $1,500,000 $2,000,000  
 
Exercises for This Topic: 
Go the download place at  
 http://www.zweigmedia.com/qm203/  
and download the data under "Homework Assignment on Ford Stock Pricel". Determine 
whether the Yen and Mark rates contribute significantly more information to the Ford 
stock price than the S&P index alone. 
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Topic 8 
Quadratic and Interactive Terms   
 
Quadratic Terms  
(Based on 16.1 in the text) 
Here are some data and a graph showing monthly electricity use vs. size of home in 
square ft. 

Size (sq. ft) x 1290 1350 1470 1600 1710 1840 1980 2230 2400 2930 
Usage (kw-hrs)  y 1180 1170 1260 1490 1570 1710 1800 1840 1960 1950 

 

 
The Excel scatter chart suggests a quadratic relation. y = ∫0 + ∫1x1 + ∫2x1

2, so we take 
x2 to be x1

2, by adding an extra column on the spreadsheet, and then do a multiple linear 
regression. The curvature is accounted for by the x1

2 term, so: 
 

There is no curvature ⇔ Coefficient of x2 = 0 ⇔ ∫2 = 0 
 
Therefore, to test whether there is evidence of curvature, all we need to do is a t-test to 
look at the coefficient of x2. 
 
Worksheet 1 — Testing for Curvature 
Use the above data in Excel, complete the given table, find the regression quadratic 
model, use it top predict electric usage for a 2500 square ft home, and test for curvature at 
the 95% significance level. 
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First, download the data from  
 http://www.zweigmedia.com/qm203/ 
by using the Curvature Data link. Then create an extra column in the Excel workbook 
using the squares of the values of x (Notice that we put the y-column first): 

 
 
Now do a regression using both x and x2 as the explanatory variables. Now do the 
regression and check that the given values match the part of the sheet shown below, and 
fill in the remaining ones. 
 

Regression Statistics     
Multiple R 0.99091051     
R Square 0.98190365     
Adjusted R Square 0.97673326     
Standard Error 46.9099376     
Observations 10     
      
ANOVA      

  df SS MS F Significance F 
Regression 2 835806.204 417903.102 189.909147 7.972E-07 
Residual 7 15403.7957 2200.54225   
Total 9 851210       
      

  Coefficients Standard Error t Stat P-value Lower 95% 
Intercept -1234.7 243.36981 -5.0733492 0.00144169 -1810.1778 
x 2.41543711 0.24640607 9.80266875 2.4394E-05 1.83277975 
x^2 -0.0004538 5.9214E-05 -7.6636835 0.00011978 -0.0005938 
 
The regression equation is 

 ŷ =                                                                                            
 
Predicted value of y for a 2500 sq ft home = 
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Now test for curvature: 
 H0: ______________ 
 Ha: ______________ 
 df = n - k-1 = ______ 
 
Rejection region: 
 critical t = __________ 

  
 
 t-statistic: __________       In rejection region?  ______ 
  
 Conclusion: ___________________________________ 
 
Interpret ting result of hypothesis test: 
 
 
 
 

p-value for ∫2 = ____________ 
Interpretation: 
 
 
 
 
 
Does the cost accelerate or decelerate as the size of the home increases? Explain 
 
 
 
 
 
 
 
 
Interactive Models 
(Based on nothing in this book, but a nice section in “Statistics for Business and 
Economics;” by McClave, Benson, Sincich; 8th Ed., Prentice Hall.) 
 
Here is some data showing the auction prices of 32 grandfather clocks together with the 
number of bidders and the age of the clock. 
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Age # Bidders Auction Price Age # Bidders Auction Price 
X1 X2 Y X1 X2 Y 

127 13 1200 170 14 2100 
115 12 1100 182 8 1600 
127 7 850 162 11 1900 
150 9 1500 184 10 2000 
156 6 1000 143 6 800 
182 11 2000 159 9 1500 
156 12 1800 108 14 1100 
132 10 1300 175 8 1500 
137 9 1300 108 6 700 
113 9 1000 179 9 1800 
137 15 1700 111 15 1200 
117 11 1000 187 8 1600 
137 8 1100 111 7 800 
153 6 1100 115 7 700 
117 13 1200 194 5 1400 
126 10 1300 168 7 1300 

 
If we suspect that the age of the clock (x1) and the number of bidders (x2) will interact 
(that is, different numbers of bidders may cause the price to vary differently as a function 
of the age), we try a model of the form 
 y = ∫0 + ∫1x1 + ∫2x2 + ∫3x1x2 + œ. 
 
The effect on the graph is to twist the surface (see the following picture generated by the 
grapher that comes with every Macintosh computer): 
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If ∫3 = 0, then each value of x2 will result in a line of the same slope for y as a function 
of x1. Otherwise, if ∫3 ≠ 0, the slope will vary. 
 

Age of Clock (x1)

Price (y) x1 = 15 bidders

x1 = 10 bidders

x1 = 5 bidders

Age of Clock (x1)

Price (y) x1 = 15 bidders

x1 = 10 bidders

x1 = 5 bidders

 
No Interaction (∫3 = 0)  Interaction (∫3 ≠ 0)  

 
 
We suspect that the number of bidders will have a positive impact on the variation of 
price with age, so we test the alternate hypothesis Ha ∫3 > 0. To do this on Excel, we 
introduce a third column for x1x2, and do a regression at the 99% significance level: 
 

Regression Statistics     
Multiple R 0.97309468     
R Square 0.94691325     
Adjusted R 
Square 

0.94122538     

Standard 
Error 

95.4955358     

Observations 32     
      

ANOVA      
 df SS MS F Significance F 

Regression 3 4554578.75 1518192.92 166.479523 5.9656E-18 
Residual 28 255343.126 9119.39735   
Total 31 4809921.88    

      
 Coefficients Standard 

Error 
t Stat P-value Lower 95% 

Intercept 61.6599935 316.98622 0.19451948 0.84717364 -587.65757 
X1 2.62232358 2.18256632 1.20148632 0.23962706 -1.8484659 
X2 -65.831044 32.1040495 -2.0505527 0.04977643 -131.59328 
X1X2 1.11008423 0.22804843 4.86775643 3.9815E-05 0.64294766 

      
 
The t-statistic for ∫3 is 4.86. We look up tå = t0.001 for n-(k+1) = 28 degrees of freedom 
as usual, and get 3.408. Since t > tå, we reject H0 and conclude that there is a strong 
interaction here. Also note the large value of R2 (95%) and the tiny value for Significance 
F, showing that the model is a good one. 
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Exercises for this Section 
Quadratic: p. 709 #8 (test for curvature the way we do, and also read up about using the 
log transformation and try it).  
 
Interaction: The following problem comes from “Statistics for Business and Economics;” 
by McClave, Benson, Sincich; 8th Ed., Prentice Hall.  
Download the CEO Data sheet at  
 http://www.zweigmedia.com/qm203/ 
(a) What does it mean for the salary and percentage stock price to interact? 
(b) Find the interaction regression equation, and test the overall model at the 95% level of 
significance. (You will fail to reject H0.) 
(c) Is there evidence at the 95% level of significance that CEO income and stock 
percentage interact?  
(c) Looking at the p-values, try to eliminate one of the variables in order to obtain a 
model with a satisfactory F-value. What is the resulting regression model? 
(d) Using the better regression model, predict the change in profit for every $1000 
increase in a CEO's income when the CEO owns 2% of the company stock. 
(e) If you were on a board of directors and wished to use the regression analysis above, 
would you be in favor giving a new CEO more stock and a lower salary? Explain.  
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Topic 9 
Qualitative Variables    
(Based on §15.7 in the book, but we go further) 
 
If, for example, we are interested in the market activity in real estate, the time a home has 
to wait on the market may depend on whether it is a house or a condominium, and also on 
the asking price. Here, the asking price is a quantitative variable since it is a number, 
while the kind of home (house vs. condo) is a qualitative variable. In this topic, we see 
how to include qualitative variables (or "dummy variables" as they are called in the 
textbook.). 
 
Suppose we are interested in the sale price of a home as a function of whether it is (A) a 
house, (B) a condominium, or (C) a co-op. We can do so by defining two new variables 
(not three) 

 x1 = ⎩
⎨
⎧1 if the property is a condominium (Catgegory B);
0 if not   

 x2 = ⎩
⎨
⎧1 if the property is a co-op (Category C);
0 if not   

Then, in the model, we can plug in x1 = x2 = 0 for a house, x1 = 1 & x2 = 0 for a condo, 
etc. We say that x1 and x2 constitute a qualitative variable with 3 levels. 
 
Q How do we interpret the coefficients ∫i for the model? 
A  If we use the example of housing sales, then, writing 
 y– = ∫0 + ∫1x1 + ∫2x2, 
we find 
 µA = mean sale price of a house (put x1 = x2 = 0) = f(0,0) = ∫0    
 µB = mean sale price of a condominium (put x1 = 1 & x2 = 0) = f(1,0) = ∫0 + ∫1  
 µC = mean sale price of a co-op (put x1 = 0 & x2 = 1) = f(0,1) = ∫0 + ∫2 
Thus, 
 ∫0 = µA 
 ∫1 = µB-µA 
 ∫2 = µC-µA. 
In other words, the coefficients measure the difference between the three categories. For 
instance, ∫1 measures the effect on the price of a home of switching from a house (the 
base level) to a condominium.  
 
Qualitative Variable With k Levels: Comparing k  Means 
Model:  E(y) = ∫0 + ∫1x1 + ∫2x2 + ... + ∫k-1xk-1 

  xi = ⎩
⎨
⎧1 if y is observed at level i;
0 if not   

 µA = ∫0     ∫0 = µA 
 µB =∫0 + ∫1    ∫1 = µB-µA 
 µC = ∫0 + ∫2    ∫2 = µC-µA 
 ....     ... 
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Worksheet 1 — Comparing 3 Means 
Go to  
 http://www.zweigmedia.com/qm203/ 
and download the Housing Prices Excel file. There you will find selling prices of various 
homes in 1995 (y) sold in (A) Manhattan, (B) Connecticut, and (C) Long Island.  
(a) Obtain the regression model and interpret the coefficients in the model. 
(b) Test at the 95% level of significance whether Connecticut homes are cheaper tan 
Manhattan homes, and whether Long Island homes are cheaper than Manhattan homes. 
(c) Test the overall model, and interpret the result. 
(d) According to the regression model, how much more expensive is a home in 
Connecticut than in Long Island? 
 
 (a) The explanatory variables are: 
  

 x1 = 
⎩⎪
⎨
⎪⎧1 if _____________________

0 if _____________________
  

  

 x2 = 
⎩⎪
⎨
⎪⎧1 if _____________________

0 if _____________________
  

 
The model is y– = ∫0 + ∫1x1 + ∫2x2, where 
 
 ∫0 = _____________________________________ 
  
 ∫1 =  _____________________________________ 
 
 ∫2 =  _____________________________________ 
 
Interpretation of coefficients: 
∫0: 

 

 

 

∫1: 
 
 
 
 

∫2: 
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(b) Comparing Connecticut and Manhattan: 
 H0: _____________ 
 Ha: _____________ 
 p-value for 2-tail test: _____________   
 p-value for 1-tail test: = 12  p-value for 1-tail test = ______________ 
Conclusion & Interpretation: 
 
 
 
 
 
Comparing Long Island and Manhattan: 
 H0: _____________ 
 Ha: _____________ 
 p-value for 2-tail test: _____________   
 p-value for 1-tail test: = 12  p-value for 1-tail test = ______________ 
Conclusion & Interpretation: 
 
 
 
(c) Testing overall model:  
 H0: _____________ 
 Ha: _____________ 
 F-significance: _____________  
Conclusion & Interpretation: 
 
 
 
 
(d) µC - µB = (µC - µA) - (µB - µA)  
  = ___________ - ___________  = __________ 
 
Interpretation: 
 
 
 

 
NOTE H0 only tests whether µB = µA and µC = µA. It does not test whether µC = µB. 
However—and this is why we use the term “level”—. If we were comparing the 
effectiveness of 5 different brands of detergents on a ketchup stain, we do not have 
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levels, and would like to know whether there is any difference at all among the 5 brands. 
Since there is no sense of “levels” here, we will use ANOVA (analysis of variance) later 
in this course address this. 
 
Using Qualitative Variables to Compare Two Slopes 
The effectiveness of an advertising medium can be measured by the number of items sold 
per $1,000 spent on advertising. That is, the slope of the Sales vs. Expenditures line. 
Suppose we want to compare (A) newspaper, (B) television, and (C) radio advertising. 
Let y be the monthly sales , and let x be the advertising expenditure (all three categories). 
Note that x is a quantitative variable. Let  
 

 x1 = ⎩
⎨
⎧1 if we were advertising on the radio;
0 if not   

 x2 = ⎩
⎨
⎧1 if we were advertising on television;
0 if not   

 
Then consider first the linear model 
 y– = ∫0 + ∫1x + ∫2x1 + ∫3x2. 
Claim: This model gives the same sales vs. expenditure slope for all three categories. 
Indeed, the slope for newspaper sales is obtained by setting ∫2 = ∫3 = 0, and we get 
 y– = ∫0 + ∫1x , 
yielding a slope of ∫1. Similarly, if we look at radio advertising, we get 
 y– = ∫0 + ∫1x + ∫2,     (1) 
again a slope of ∫1.  
 
To obtain different slopes, we need the following interactive model: 
 y– = ∫0 + ∫1x + ∫2x1 + ∫3x2 + ∫4xx1 + ∫5xx2.  (2) 
This gives a slope of ∫1 for newspaper, ∫1+∫4 for radio, and ∫1+∫5 for television. Thus, 
if we test the hypothesis 
 H0: ∫4 = ∫5 = 0 
we are in fact testing whether or not the slopes for the three media are the same by testing 
the model for interaction. To do this, we use the reduced model test, comparing the 
interactive model and linear model..  
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Worksheet 2 — Comparing 2 Slopes 
We want to compare the response to monetary bonuses for two types of worker: union 
and non-union. Here is the data, available under "Productivity" at 
 http://www.zweigmedia.com/qm203/ 
 

 productivity bonus union? productivity bonus union?  
 y x x1 y x x1  
 1435 0.2 1 1635 0.3 0  
 1512 0.2 1 1589 0.3 0  
 1491 0.2 1 1661 0.3 0  
 1575 0.2 0 1610 0.4 1  
 1512 0.2 0 1574 0.4 1  
 1488 0.2 0 1636 0.4 1  
 1583 0.3 1 1654 0.4 0  
 1529 0.3 1 1616 0.4 0  
 1610 0.3 1 1689 0.4 0  

 
(a) Using a regression model, determine the coefficients that give the slope of (1) 
productivity vs. bonus for non-union workers and (2) productivity vs. bonus for union 
workers Do the data provide evidence that non-union workers are more responsive to 
bonuses than union workers? 
(b) If we disregard bonuses, do the data provide evidence that non-union workers 
produce less than union workers? 
 
Solution 
(a) We use two levels: (A) non-union and (B) union. The model that shows  
 We compare the following models: 
 y– = _________________________________ Linear  
 
 y– = _________________________________ Interactive  
 
Normally, we would do a regression for each of these models. But, since they differ only 
by a single term, we need only do the interaction model and look at the (single) 
interaction term using a t-test. Set up the interactive model to obtain the following output: 
 
Interactive Model 

Regression Statistics    
Multiple R 0.85002282    
R Square 0.72253879    
Adjusted R Square 0.66308282    
Standard Error 40.433563    
Observations 18    

     
ANOVA     

 df SS MS F 
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Regression 3 59603.3889 19867.7963 12.1525012 
Residual 14 22888.2222 1634.87302  
Total 17 82491.6111   

     
 Coefficients Standard Error t Stat P-value 

Intercept 1410.11111 51.3221403 27.475688 1.4008E-13 
x 640 165.06933 3.87715877 0.00167544 
x1 -47.777778 72.5804668 -0.6582732 0.52104129 
x*x1 -3.3333333 233.443285 -0.014279 0.9888089 
 
Model for non-union workers: x1 = ____ y– = ____________________________ 

Slope for non-union workers:                

Model for union workers:  x1 = _____ y– = ____________________________  

Slope for union workers:                
Hypothesis test to check whether union members are less responsive: 
 H0: __________ 

 Ha: __________ 
  
 
 p-value for 2-tail test: _____________   

 p-value for 1-tail test:  ______________ 
 
Conclusion & Interpretation: 
 
 
 
 
 
 
(b) We are asked to compare two means for (A) non-union (B) union, regardless of 
bonuses, so we ignore x. The model we use is therefore a simple regression: 
 
 y– = ∫0 + ∫1x1 
 
Hypothesis test to check whether union members produce less: 
 H0: __________ 

 Ha: __________ 
  
 
 p-value for 2-tail test: _____________   

 p-value for 1-tail test:  ______________ 
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Conclusion & Interpretation: 
 
 
 
 
 
 
Exercises for this topic: 
Comparing 4 means: Download the Sales Data (Seasonal) worksheet at  
 http://www.zweigmedia.com/qm203/ 
and use it to compare average sales for (A) first quarter (B) second quarter, (C) third 
quarter and (D) fourth quarter.  
(a) Construct the model and define each of the variables. 
(b) Perform the regression and interpret each of the slopes. 
(c) Is there a significant difference between sales in the different quarters? 
(d) According to the model, what is the difference between third and fourth quarter sales? 
(e) Are there any variables that do not contribute significantly to the model? If so, reduce 
the model appropriately and repeat parts (b) and (c). 
 
Comparing two slopes: p. 622, #12.40 For part (a), they mean an ordinary linear model. 
Omit (i), (j), (k), (l) since they do not tell us anything interesting. Part (m) refers to the 
linear model.  
Also, answer the following question: If we ignore shelf space (notice the nice distribution 
of shelf sizes anyway) do items placed in front sell better than object placed at the back? 
 
Excel Assignment 2 
Go the web site at  
 http://www.zweigmedia.com/qm203/ 
and download the Assignment 2 Excel worksheet.  
Important: Use the 90% level of significance throughout. 
Part 1: 
Extract the Long Island home sales data only. Let 
 y = Sales price in $1000 
 x1 = Number of bedrooms 
 x2 = Time on market in weeks 
 x3 = Taxes & Maintenance 
Perform three regressions as follows. In each case, write down the regression model with 
coefficients rounded to 4 significant digits, and use the model to predict the selling price 
of a 3-bedroom home whose with $25,000 taxes after 10 weeks on the market. 
(a) Multiple linear model: y = ∫0 + ∫1x1 + ∫2x2 + ∫3x3 
(b) Interactive Model: y = ∫0 + ∫1x1 + ∫2x2 + ∫3x3 + ∫4x1x2 + ∫5x1x3 + ∫6x2x3 

(c) Quadratic model: y = ∫0 + ∫1x1 + ∫2x2 + ∫3x3 + ∫4x1
2 + ∫5x2

2 + ∫6x3
2 

(d) Full second order model: y = Quadratic model + interactive terms 
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(e) Compare the model in (d) with those in (b) and (c). Based on the outcomes, decide 
which of the three models (b), (c), (d) is best for predicting the cost of a home. [Hint: The 
comparison of (d) and (b) tells you whether the quadratic terms contribute significantly, 
and the comparison of (d) and (c) tells you whether any of the interactive terms 
contribute significantly.] 
 
Part 2: 
Using the same data sheet, compare housing prices in (A) Manhattan, (B) Westchester, 
(C) Connecticut, and (D) New Jersey: 
(a) Is there any significant difference between housing prices in the four areas? 
(b) What does your regression model predict for the difference between the cost of a 
home in New Jersey and Westchester? 
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Topic 10 
Analysis of Variance (ANOVA): Single Factor Analysis   
(Based on 13.2 in the book) 
 
In the language of ANOVA, we are interested in the response (dependent variable, which 
we called y in regression) to one or more factors (independent variables which we called 
x1, x2, ... in regression). These factors may be qualitative or quantitative, and their values 
are called levels. This is where they differ from the qualitative variables as we used them 
in regression. For instance, a qualitative factor may have non-numerical levels, such as 
Soccer, Football, etc., while quantitative ones have numerical levels. Finally, the 
treatments in an experiment are the levels (in a single factor experiment) or pairs of 
levels (in a multiple factor experiment), and the units are the elements of the sample 
space n the experiment (e.g. students for SAT measurements).  
 
Design of Experiments To design an experiment for factor analysis, one needs to first 
select a random sample of experimental units (e.g. soccer players) and then assign them 
(possibly randomly) to individual treatments for a given factor (e.g. have them practice in 
different brands of cleats and measure the resulting wear and tear). In an observational  
experiment, you would not decide who wears what cleats, but simply observe the wear 
and tear on the brands of cleats they already use. In a completely randomized design, 
one assigns experimental units (soccer players) to treatments completely randomly and 
independently.  
 
The objective is usually to compare the sample means for the different levels: µ1, µ2, ..., 

µc and we will test the null hypothesis 
  H0: µ1 = µ2 = ... = µc 
against  Ha: at least two of the treatment means are different. 
 
Q How do we test this? 
A For two treatments, we need to compare two means, µ1 and µ2.  
Method 1: Comparison of Two Means Statistics 
For this, we have the following, based on the sampling distribution of x–2-x–1. 
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Comparing two Means 
Large Samples: 

 ß(x–2-x–1)
 = 

ß1
2

n1
 + 

ß2
2

n2
   ‡ 

s1
2

n1
 + 

s2
2

n2
   

 
Confidence Interval for (µ2-µ1)  
 (x–2-x–1) ± zå/2 ß(x–2-x–1)

 
 
Hypothesis Test 
H0: (µ2-µ1) = D0  (D0 = 0 for our purposes here) 
Ha: (µ2-µ1) ≠ D0 or (µ2-µ1) > D0 or (µ2-µ1) < D0 
where D0 is some hypothesized difference between the two parameters. 
 

Test statistic: z = 
(x–2-x–1) - D0

 ß(x–2-x–1)
  

 
Assumptions 
The two samples are randomly and independently selected from the two samples, and the 
sample sizes are sufficiently large so that the sampling distributions are approximately 
normal. 
 
Small Samples 
When one or both of the sample sizes is small, we cannot use the above approximation of 
ß(x–2-x–1)

, since it is not an unbiased estimator. An unbiased estimator is given by: 

 s(x–2-x–1)
 = sp

2
⎝⎜
⎛

⎠⎟
⎞1

n1
 + 

1
n2

  

where 

 sp
2 = 

(n1-1)s12 + (n2-1)s22

n1+n2-2   .  ("pooled sample variance") 

This estimate allows to proceed as usual for small samples, using the t-distribution 
instead of the normal one. 
 
Assumptions 
The distributions of x1 and x2 are normal with the same population variance. (The latter 
assumption is needed in order to guarantee that we can still use the t-distribution 
(otherwise we would need to use a new distribution). 
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Method 2: Regression 

 
Q What about more than two treatments? 
A We use various statistics: 

(1) SSA = Sum of Squares Among different treatments or groups, measuring the 
variability of the treatment means (weighted with the number of samples in each 
treatment) 
  SSA = n1(x–1-x–)2 + n2(x–2-x–)2 + ... + nc(x–c-x–)2 
Related to that is 
MSA = the Mean Square Among different treatments, obtained by dividing SSA 
by ñ1= c-1, which is the number of degrees of freedom for the c treatments. 

  MSA = 
SSA
c-1   

Note that, if n1 = .. = nc = n, then MSA is n times the usual sample variance of 
the means. 

(2) SSW = Sum of Squares Within, measuring the variability within each treatment   
   SSW = £j(x1j- x–1)

 2 + £j(x2j- x–2)
 2 + ... + £j(xpj- x–pc)

2 

Comparing Two Means with Regression 
Construct the following model, but call the treatments A and B (rather than 1 and 2) 
Let  

 x1 = ⎩
⎨
⎧1 if the measurement is made with treatement B;
0 if not   

and use 
 E(y) = ∫0 + ∫1x1. 
Then,  
 µA = ∫0 
 µB = ∫0+∫1 
or  ∫1 = µB-µA, 
 
Confidence Interval for (µB-µA)  
This is the confidence interval for ∫1 
 
Hypothesis Testing 
H0: ∫1 = 0 
Ha: ∫1 ≠ 0, ∫1 > 0, or ∫1 < 0 
(If we want to use D0 ≠ 0, then first subtract D0 from all the data for treatment B.) 
 
Assumptions 
Same as for Method 1. Note that the regression assumption about the "noise" amounts to 
saying once again that the population variances are the same: Why? Because: If treatment 
B is not applied, then y = ∫0 + œ, so the st. deviation of the noise œ is the st. deviation for 
treatment A. If B is applied, then  y = ∫0 + ∫1 + œ, so that same st. deviation is the st. 
deviation for treatment B. 
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 where the sums are taken over all measurements within the corresponding 
treatment. 

 MSW, obtained by dividing SSW by its degrees of freedom: ñ2 = n-c.  

   MSW = 
SSW
n-c   

  
We take the ration of the above statistics to obtain an F-statistic:  

  F = 
MSA
MSW  = 

Variation of Means
Variation Within   

If F is close to 1, then the variation among sample means is completely explained by 
variation within treatments, and we will tend to not reject H0. If it is much larger than 1, 
we will reject H0. 
 

 
We usually summarize all the ANOVA statistics in an “ANOVE table”: 
 

Source of 
Variation 

SS df MS F P-value F crit 

Between Groups SSA c-1 
MSA = 

SSA
c-1   F = 

MSA
MSW  

Observed 
Significance 

Level 

Få 

Within Groups SST n-c 
MSW = 

SSW
n-c   

   

 
Worksheet 1—Single Factor Analysis: Doing it all By Hand 
Your employment agency tracks 15 people after placing them in permanent jobs, 
obtaining the following results, after 1 year. 
 

 Blue Collar Job (A) White Collar Job (B) Unemployed (C)  
 9 11 13  
 12 11 15  
 10 11 11  

Comparison of More than Two Means: Single Factor ANOVA 
 H0: µ1 = µ2 = ... = µc 

 Ha: at least two of the treatment means are different. 

 Test statistic: F =  
MSA
MSW  = 

Variation of Means
Variation Within   

 
Rejection region: F > Få, where Få is based on ñ1 = (c-1) numerator and ñ2 = (n-c) 
denominator degrees of freedom. 
 
Assumptions  
1. Samples are selected independently and randomly 
2. All c population distributions are normal with the same variance. 
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 8 13 12  
 11 9 9  

 
Use a Single Factor ANOVA to determine whether there is any significant difference 
among the three outcome means at the 95% significance level. (Give the ANOVA table, 
state the hypotheses, and obtain the conclusion.) 
 
Solution:  
 H0: ________________ 
 
 Ha: _________________ 
 
 n = ______  c = _______   
 

 x–1 = ______  x–2 = ______ x–3 = ______ x– = _________ 
  

SSA = n1(x–1-x–)2 + n2(x–2-x–)2 + ... + nc(x–c-x–)2 

=      ( )  
      -   

      2  +     ( )  
      -   

      2   

    +      ( )  
      -   

      2  

=                           
 
 

MSA = 
SSA
c-1   = 

                

                 
  =                           

SSW  = £j(x1j- x–1)
 2 + £j(x2j- x–2)

 2 + ... + £j(xpj- x–pc)
2 

 = ( )  
      -   

      2 +( )  
      -   

      2 +( )  
      -   

      2  

 +( )  
      -   

      2 +( )  
      -   

      2 +( )  
      -   

      2  

 +( )  
      -   

      2 +( )  
      -   

      2 +( )  
      -   

      2  

 =                           
 

 MSW = 
SSW
n-c  = 

                

                 
  =                           
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 F = 
                

                 
  =                           

 Få =                           
 

Source of 
Variation 

SS df MS F P-value F crit 

Between Groups       

Within Groups       

 
 
 Rejection region: 

  
 
 F in rejection region?  ______ 
  
Conclusion and Interpretation: 
 
 
 
 
 
 
Worksheet 2—Single Factor Analysis with Excel 
We want to compare the distance 4 different brands of golf balls will travel when hit with 
a driver, using a robotic driver. Go to 
 http://www.zweigmedia.com/qm203/ 
and download the Golf ball file to see the data. 
 

 Brand A Brand B Brand C Brand D  
 251 263 270 252  
 245 263 263 249  
 248 265 278 249  
 251 255 267 242  
 261 264 271 247  
 250 257 266 251  
 254 263 271 262  
 245 264 273 249  
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 255 261 276 247  
 249 256 267 246  

 
Here is the resulting Excel ANOVA analysis (for å = 0.05) 
 

Groups Count Sum Average Variance   
Column 1 10 2509 250.9 23.4333333   
Column 2 10 2611 261.1 13.6555556   
Column 3 10 2702 270.2 21.5111111   
Column 4 10 2494 249.4 27.3777778   

       
ANOVA       

Source of 
Variation 

SS df MS F P-value F crit 

Between 
Groups 

2827.8 3 942.6 43.853192 4.149E-12 2.86626545 

Within Groups 773.8 36 21.4944444    
Total 3601.6 39     
Solution: 
  

 H0: ______________________ 
  
 Ha: ______________________ 
 
Conclusion: 
 
 
 
 
Q How do we decide which specific golf ball goes further than the others? 
A We can compare the four brands pairwise using any of the above procedures. To do 
this, we use a Tukey-Kramer procedure: 
 
Tukey-Kramer Procedure for Pairwise Comparison 
This is used when we reject the null hypothesis in the ANOVA test (so that there is a 
significant difference among the means) 
 
Procedure:  
(1) Compute the magnitudes of all the pairwise differences |x–i - x–j| 

(2) Compute the Critical Range  Qij for this pair (if the numbers in each group are the 
same, then so are the Qij): 

 Qij = Q
MSW

2 ⎝⎜
⎛

⎠⎟
⎞1

ni
 + 

1
nj
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where 
 Q is the upper-tail critical value from a studentized range distribution with c df 
in the numerator and n-c in the denominator. (Table at the rear of the booklet.) 
 
However, if we have, say, a 95% confidence level for each hypothesis test, we cannot be 
95% confident in the result of all of them.  
 
Conclusion: If  |x–i - x–j| exceeds Qij, then there is a statistically significant difference 
between µi and µj. Otherwise, there is not.  
 
Worksheet 3—Using Tukey-Kramer  
Let us continue our analysis of the 4 brands of golf balls above: 
 x–1 = ______  x–2 = ______ x–3 = ______  
 
Enter these values in a spreadsheet as shown: 
 

 A B C D E 
1  x–1 x–2 x–3 x–4 
2 x–1 =ABS(B1-

A2) 
   

3 x–2     
4 x–3     
5 x–4     

 
Then copy across the rows and columns to instantaneously compute all the absolute 
values of the differences. 
 
Next, compute Qcritical (there is only one of them .. why?) 
 

 MSW =                           c =                      n-c =                      

 Q =                    (from table) 

 Qcritical = Q
MSW

2 ⎝⎜
⎛

⎠⎟
⎞1

ni
 + 

1
nj

  

  =                   
                      

2
⎣
⎢
⎡

⎦
⎥
⎤1

     + 
1
      

  ‡                   ×                     ‡                    

 
Conclusion:  
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Exercises for this topic: 
p. 505 #1 Do this "by hand" 
# 10 (Use Excel) 
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Topic 11   
ANOVA—Two-Factor 
(Based on §13.5 in book) 
 
If we are looking at two factors (e.g. A: Type of club used to hit a ball, and B (2 of them, 
say): the brand of golf ball (4 of them, say)) then we might want to look at all possible 
combinations, or treatments: 8 of them. An experiment which includes all the possible 
treatments is called a complete factorial experiment.  
 
S'pose that Factor 1 has a levels and Factor 2 has b levels, so that there are ab treatments 
altogether. We are interested in two kinds of results:  
 

 
Q Exactly what are all these things MS(A), MS(B) and MS(AB), etc? 
A They are obtained as follows. 
 SS(A) = n1(x–1-x–)2 + n2(x–2-x–)2 + ... + na(x–a-x–)2, 
where the x–1 is the mean for all data from level 1 of Factor A, x–2 is the mean for level 2, 
etc. (just ignore which level of Factor B they belong to). x– is the overall mean. Then, to 
get MS(A), divide by the (number of treatments for Factor A) -1: 

Main Effect of Factor A: 
H0:: No difference among the a  levels in Factor A: 
(i.e., the brand of golf ball does not effect the distance traveled 
Ha: at least two of the factor A means differ.)  

Test statistic: F = 
MS(A)
MSW   Rejection region F>Få based on (a-1) numerator & (n-ab) 

denominator. 
 
Main Effect of Factor B: 
H0:: No difference among the b  levels in Factor B: 
(i.e., the type of golf club does not effect the distance traveled 
Ha: at least two of the factor B means differ.)  

Test statistic: F = 
MS(B)
MSW   Rejection region F>Få based on (b-1) numerator & (n-ab) 

denominator. 
 
Interaction: 
H0: Factors A  and B  do not interact to effect the response mean  
(i.e., changing the golf ball has no effect on the ratios of the mean distances for the type 
of club used.) 
Ha: A and B do interact to effect the response mean.) 

Test statistic: F = 
MS(AB)

MSW   Rejection region F>Få based on (a-1)(b-1) numerator & 
(n-ab) denominator. 
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 MS(A) = 
SS(A)
a-1   

 SST(B) and MS(B) are defined similarly. 

 For SS(AB), use the sum of all terms nij (x–ij - x–j - x–j + x–)2 

where x–ij is the mean of all data from treatment (i, j); that is, level i of factor A and 
level j of factor B, and nij is the number of these data points. 

 So, MS(AB) = 
SS(AB)

(a-1)(b-1)  

 
Question: What do we do when there is interaction? 
Answer: The interaction test should be done first because, it there is interaction, then the 
results for main effects are not informative (certain levels of Factor A might respond 
favorably with certain levels of Factor B) and the Main Effects statistics combine all the 
levels of one of the factors. When there is interaction, the only meaningful pairwise 
comparisons are among all the ab treatments. That is, regard the entire experiment as a 
single factor one with ab different levels, and do a pairwise comparison using Tukey-
Kramer. 
 
Question: If there is no interaction? 
Answer Then do the entire analysis. If Factor A has an effect, then do a pairwise 
comparison among the a levels in Factor A using the following critical value for Q (due 
to Tukey —by himself, this time): 

 Qcritical = Q
MSW
bn'   

where n' = number of data scores within each treatment, and where Q has the following 
degrees of freedom: numerator: a, denominator: ab(n'-1) 
 
Worksheet 1—Two Factor ANOVA with Excel 
We consider more golf club data where, this time the factors are: 
 Factor A: type of club; a = 2 
 Factor B: brand of club; b = 4 
The following data is at 
 http://www.zweigmedia.com/qm203/ 
under Golfball Two Factor. 
          B: BRAND 

   1 2 3 4  
   227 238 241 220  
  Driver 232 232 247 229  
   234 227 240 233  
 A: TYPE  221 237 245 238  
   164 184 186 170  
  5 Iron 180 181 193 179  
   167 180 190 184  
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   173 186 192 187  
 
Here is the Excel Two Factor (with replication) output for this data (we replicate this in 
class). Note that the input data must include the headings: it is the block outlined above. 
 

       
SUMMARY Brand 1 Brand 2 Brand 3 Brand 4 Total  

Driver       
Count 4 4 4 4 16  
Sum 914 934 973 920 3741  
Average 228.5 233.5 243.25 230 233.8125  
Variance 33.6666667 25.6666667 10.9166667 58 60.8291667  
       

             
Count 4 4 4 4 16  
Sum 684 731 761 720 2896  
Average 171 182.75 190.25 180 181  
Variance 50 7.58333333 9.58333333 55.3333333 75.0666667  
       

Total           
Count 8 8 8 8   
Sum 1598 1665 1734 1640   
Average 199.75 208.125 216.75 205   
Variance 980.5 750.125 811.357143 762.857143   

       
       

ANOVA       
Source of 
Variation 

SS df MS F P-value F crit 

Sample 
SS(A) 

22313.2813 1 
MS(A) 

22313.2813 711.889332 2.3699E-19 4.25967528 

Columns 
SS(B) 

1217.84375 3 
MS(B) 

405.947917 12.9514789 3.1138E-05 3.00878611 

Interaction 
SS(AB) 

68.34375 3 
MS(AB) 
22.78125 0.72681954 0.54597736 3.00878611 

Within 
SSW 

752.25 24 
MSW 

31.34375    
       
Total 24351.7188 31         
 
Let us now test the following hypotheses, as shown in the box before the example: 
 Factor A = type of club; a = 2 
 Factor B = brand of club; b = 4 
 n = number of data points = 32 
 
Interaction:    H0: ___________________________ 
    Ha: ___________________________ 
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    P-value: ______________ 
Conclusion:  
 
 
 
Main Effect of Factor A: H0: _____________ 
    Ha: _____________ 
 
    P-value: ______________  
 
Conclusion:  
 
 
 
Main Effect of Factor B: H0: _____________ 
    Ha: _____________ 
 
    P-value: ______________  
 
Conclusion:  
 
 
 
Tukey for Factor A: 
 x–1 = Average for all drivers = 233.8125  (Get this from the above output) 

 x–2 = Average for all 5-irons =  
                           

 |x–2 - x–1| = | | 
                           -  

                            =  
                           

 n' = Number of data scores within each treatment =  
                 

 Degrees of freedom for Q:  Numerator: a =  
                   

    Denominator: ab(n'-1) =  
                 

 Qcrit = Q
MSW
bn'   =  

                          
 
                          

                              
  

 
 Conclusion:  
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Tukey for Factor B: 
 x–1 = Average for all brand 1 golf balls = 199.75  (Get this from the above output) 
 x–2 = Average for all brand 2 golf balls =  

                           

 x–3 = Average for all brand 3 golf balls =  
                            

 x–4 = Average for all brand 4 golf balls =  
                           

 
Differences Table: |x–i - x–j| 

 A B C D E 
1  x–1 x–2 x–3 x–4 
2 x–1     
3 x–2     
4 x–3     
5 x–4     

 

 n' = Number of data scores within each treatment =  
                 

 Degrees of freedom for Q:  Numerator: b =  
                   

    Denominator: ab(n'-1) =  
                 

 Qcrit = Q
MSW
an'   =  

                          
 
                          

                              
  

 
 Conclusion: 
 
 
 
  
 
Exercises for this topic: 
p. 527 #30 
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Topic 12 
Quality Improvement: Types of Variation 
(Based on §20.2 in book) 
 
Basically, we are interested in monitoring the output of some (industrial) process to check 
for patterns that might indicate a production problem. We use time series plot together 
with a centerline drawn at the intended mean.  
 
Examples of Variation: 
Oscillation up & down relative to mean 
Uptrend/downtrend 
increasing variance 
cyclical behavior 
meandering (autocorrelation) 
outlier/shock 
level shift (jump to new level) 
 
The output distribution is characterized by its mean and variance. If neither of these 
quantities changes with time, then the process is in a state of statistical control. 
Otherwise, it's out of statistical control.  Note that random behavior is not a sign of 
being out of control. However, variation of its mean and variance is. 
 
Testing for Statistical Control 
 
The First Test: The 3ß-Control Limit 
 Let  H0: Process is under control (normally distributed with st. deviation ß) 
  Ha: Process is out of control 
 
If the process is under control, then 0.0027 (or 0.27%) of the data point should lie outside 
3 standard deviations from the mean. So, every time the machine produces a widget, we 
can measure its size, and then test Ho. Let our rule for rejection be this: 
 Rule for rejecting H0: If the reading is outside 3ß, then reject H0. 
The probability of a Type I error is then 
     P(we reject H0 | H0 is valid)  
 = P(reading is outside 3ß | data is normally distributed with st. deviation ß) 
 = 0.0027. 
 
Question What do we use as the mean and standard deviation for the process? 
Answer The sample mean and st. deviation, if that's all we can find. 
 
Types of Charts: 
First, we look at charts to monitor the ranges of a process (R charts) and the sample 
means (x– charts). The first chart that should be examined for a specific process is the R 
chart, because if it is out of statistical control, then the information given on the x– chart 
may not be meaningful. 
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1. R chart 
R stands for Range, and this gives a useful estimate for monitoring the standard deviation 
of smallish samples. To measure R, we use small samples of output readings, compute the 
range of each, and then plot the data. In the graph, we use a centerline and upper and 
lower control limits (UCL, LCL). These are estimates of the following quantities: 
 

Centerline = estimate of µ  (population mean of the ranges) 
UCL = estimate of µ + 3ß/ n  (n = sample size, ß = standard deviation of the 
ranges)  

 
Unbiased estimators are given as follows: 
 Estimator of R:  R—   ← Centerline 
 Estimator for µ - 3ß/ n  = D3R— ← LCL  
 Estimator for µ + 3ß/ n  = D4R— ← UCL 
  
 
where D3 and D4 are obtained from the control chart table at the back.. (It is computed 
from intermediate statistics called d2 and d3, also shown in that table). 
 
Given these limits, we graph the time series in question (R in this case) and use the 
following pattern recognition rules to determine whether the process is out of statistical 
control: 
 
Pattern Analysis Rules 
These are rules to spot rare events; that is, events that indicate a likelihood that a process 
is out of control. 
 
H0: Process is under control (normally distributed with a fixed standard deviation) 
Ha: Process is out of control 
 
We reject H0 if any one of the following conditions are found: 
 
Rule 1:  One or more points beyond the UCL or LCL (Outlier or increasing variance) 
Rule 2: 8 points in a row on the same side of the centerline (Meandering,  

Uptrend/downtrend, or level shift) 
Rule 3:  Six points in a row monotonically increasing or decreasing 

(Uptrend/downtrend) 
Rule 4: 14 points in a row oscillating up & down (Oscillation) 
 
Note: Detecting cyclical behavior is more tricky, and may require more sophisticated 
methods (such as Fourier transform methods). 
 



 80 

When a process is suspected of being out of control, the process should be analyzed to 
determine what, if any, changes should be made. Even when it is in statistical control, the 
process might not be satisfactory — for instance, the mean value of R might be too large, 
reflecting an unacceptably large variation in the product being manufactured. 
 
Worksheet 1—R  Chart 
The following data is at 
 http://www.zweigmedia.com/qm203/ 
under Soda Bottle Fills: 
 

 Soda Bottle Fi l ls (l i ters)     
Sample #       

1 1.006 1.013 1.015 0.987 1.006  
2 0.997 1.002 1 1.006 1.013  
3 0.996 0.997 0.986 0.99 1.012  
4 0.999 0.993 0.986 1.003 0.986  
5 0.995 0.992 0.994 1.012 1.003  
6 1.009 0.992 0.999 1.013 1.002  
7 0.989 1.007 0.997 0.987 1.001  
8 0.995 0.998 0.989 0.993 0.996  
9 1 0.997 1.008 1.008 1.006  

10 1.006 0.987 0.998 0.994 1.002  
11 1.009 0.988 0.999 1.003 0.992  
12 0.996 0.994 0.99 0.988 0.992  
13 0.992 0.995 1.012 1.013 0.997  
14 0.986 1.001 0.99 1.008 1.004  
15 1.005 1 0.999 1.002 1.008  
16 0.988 1.009 0.993 0.99 1.01  
17 0.997 1.008 1.011 1.007 1.006  
18 0.993 1.001 0.986 0.987 1.002  
19 1.014 1.006 1.001 0.986 1.009  
20 0.991 1.001 0.993 1.01 1.007  
21 1.008 1.008 1.012 0.989 0.999  
22 0.988 0.988 0.99 0.987 0.996  
23 1.013 1.009 1.014 0.989 0.993  
24 0.988 0.988 1 0.99 1.007  
25 0.997 0.995 1.008 1.013 1.011  
26 0.996 1.013 1.01 0.996 0.989  
27 1.008 1.014 0.996 0.991 0.989  
28 1.002 1.005 1.006 0.991 0.993  
29 0.988 1.013 0.993 0.996 1.014  
30 1.013 1.01 1.006 1.005 1.013  
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Control limits for R-chart: 
 Centerline = R— =                         

 D3 =                         D4 =                         

 LCL = D3R— =                         

 UCL = D4R— =                         
 
Now we graph the ranges with the control limits, and look at each of the pattern 
recognition rules: 
 
Rule 1:  One or more points beyond the UCL or LCL (Outlier or increasing variance) 
 Yes   No   
Rule 2: 8 points in a row on the same side of the centerline (Meandering,  

Uptrend/downtrend, or level shift) 
 Yes   No   
Rule 3:  Six points in a row monotonically increasing or decreasing 

(Uptrend/downtrend) 
 Yes   No   
Rule 4: 14 points in a row oscillating up & down (Oscillation) 
 Yes   No   
  
Conclusion: 
   
 
 
 
 
2. Means Chart (x –  Chart) 
Used to detect changes in the sample mean: Here we plot successive sample means vs. 
time. 
  

Centerline = estimate of µ  (population mean of the x-values) 
UCL = estimate of µ + 3ß/ n  (n = sample size, ß = standard deviation of the 
samples)  

 
Unbiased estimators are given as follows: 
 Estimator of R:  x–—    ← Centerline 
 Estimator for µ - 3ß/ n  = x–— - A2R—   ← LCL 
 Estimator for µ + 3ß/ n  = x–— + A2R—   ← UCL 
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where A2 is obtained from the control chart table at the back.. (It is computed using the 
estimate 

 ß̂  = 
R—
d2

 , (d2 is an estimator of R/ß and depends on n) 

where R— is the mean of the sample ranges  
 
Worksheet 2—x –  Chart 
We again use the soda data at 
 http://www.zweigmedia.com/qm203/ 
under Soda Bottle Fills. 
 
Control limits for R-chart: 
 Centerline = x–— =                          

 A2 =                          R— =                         

 LCL = x–— - A2R— =                         

 UCL = x–— + A2R— =                         
 
Now we graph the means with the control limits, and look at each of the pattern 
recognition rules: 
 
Rule 1:  One or more points beyond the UCL or LCL (Outlier or increasing variance) 
 Yes   No   
Rule 2: 8 points in a row on the same side of the centerline (Meandering,  

Uptrend/downtrend, or level shift) 
 Yes   No   
Rule 3:  Six points in a row monotonically increasing or decreasing 

(Uptrend/downtrend) 
 Yes   No   
Rule 4: 14 points in a row oscillating up & down (Oscillation) 
 Yes   No   
  
Conclusion: 
   
 
 
 
 
3. Proportions Chart (p-Chart) 
This is used for monitoring qualitative processes: e.g., is the product defective or not? 
The statistic we monitor here is 
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 p̂  = 
# defective items in the sample

# items in the sample     (we are monitoring this statistic) 

 p– = 
total # defective items
total # items monitored   (an estimator of p) ← Centerline 

 ßp– = 
p(1-p)

n     (n = size of each sample) 

Q Where does the standard deviation formula come from? 
A When n = 1, we are dealing with samples of size 1, and so  

 p̂  = ⎩⎨
⎧0 if the item is not defective
1 if it is   . 

But this is precisely the binomial random variable x which we know from QM I has 
standard deviation p(p-1) . For larger samples, p̂  is just the mean  x– of this binomial 
random variable, so we are in the sampling distribution of the mean of x. The Central 
Limit Theorem tells us that the sampling distribution of p– has standard deviation 

p(p-1)  / n . 
 
Exercises for this topic: 
p. 864 #7 
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Topic 13   
Using the Chi-Square (≈2) Distribution: Multinomial Distributions and Testing for 
Independence 
(12.1, 12.,2 in book) 
 
Multinomial Distributions 
Recall that a Bernoulli trial has two outcomes: success/failure. What about three or more 
outcomes? For this, we talk of the Multinomial Probability Distribution. This is really 
a "vector-valued" binomial distribution: Suppose for example, there are n possible 
outcomes at every trial. Then let 

 x1 = ⎩⎨
⎧1 if the outcome is #1
0 if not   , x2 = ⎩⎨

⎧1 if the outcome is #2
0 if not   , ... , 

    xk = ⎩
⎨
⎧1 if the outcome is #n
0 if not   . 

 
Then, if pi = P(xi = 1), one has p1 + p2 + ... + pk = 1. For example, p1 is the probability 
of consumers who prefer Brand i. 
 
Here, we test the following hypothesis: 
 H0: p1, p2,  ... , pk have specified values P0, ... , Pk  
  (for instance, in a no-preference situation, Pi = 1/k) 
 Ha: At least one of the probabilities differs from the prescribed value. 
 
The experiment to test the hypothesis: In a sample of size n, let  
 n1 = # of responses in which the outcome is outcome #1 
 n2 = # of responses in which the outcome is outcome #2 
 ... 
 nk = # of responses in which the outcome is outcome #k 
and let n = n1 + ... + nk (total sample size). 
If H0 is valid, then each outcome has expected value E(xi) = nPi where n is the total 
sample size. We use the following test statistic: 
 

 ≈2 = 
[n1 - E(x1)]

2

E(x1)
  + ... + 

[nk - E(xk)]
2

E(xk)
   

 (Note: ni = observed value, E(xi) = predicted value) 
 
For sufficiently large4 sample size n, the (sampling) distribution of ≈2 (in a situation 
where H0 is true) is approximately the Chi-Square distribution with (k-1) degrees of 
freedom. 
Q What do we mean by that? 

                                                
4 large enough, that is, so that E(ni) exceeds 5. 
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A Take many samples of size n, and measure ≈2 for all of these. The resulting probability 
distribution is approximately Chi-Square with (k-1) degrees of freedom.  
Q Why k-1 degrees of freedom? 
A The loss of one is due to the equation p1 + p2 + ... + pk = 1. 
Q Why is the binomial formula for E(xi) still valid in a multinomial experiment? 
A To compute E(xi), lump all the other outcomes together as "failure" and you are in the 
binomial distribution. 
 
Multinomial Probability Distribution  
This is a sequence of n independent (identical) trials, where there are k possible outcomes 
in each trial. With  
 

  xi = ⎩
⎨
⎧1 if the outcome is #i
0 if not     

 
and pi = P(xi = 1), one has p1 + p2 + ... + pk = 1.  
 
Hypotheses 
 H0: p1 = P1, p2 = P2,  ... , pk = Pk 
 Ha: At least one of the pi ≠ Pi. 
 
Test Statistic 
 With ni = # of responses in which the outcome is outcome #i 
Take 

 ≈2 = 
[n1 - E(x1)]

2

E(x1)
  + ... + 

[nk - E(xk)]
2

E(xk)
 , where E(xi) = nPi 

 Critical value for ≈2 = ≈å
2   =CHIINV(ALPHA, DF) 

 Uses df = k-1 
 
Notes  
1. This is a two-sided test; the test statistic does not differ between positive and negative 
values of ni-E(xi). 
2. The test statistic can be rewritten as follows if we divide top & bottom by n: 

 ≈2 = 
n[p̂1 - P1]

2

P1
 + ... + 

n[p̂k - Pk]
2

Pk
  

where p̂i is the observed proportion corresponding to outcome i: 

 p̂i = 
ni
n   

 
Assumptions 
Same as for the binomial distribution: The probability of each outcome is fixed and 
independent of the history.  
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Worksheet 1—Multinomial Distribution 
Pay increases at Company X depend on evaluation scores, as follows:  
 Scores > 80 → Merit pay increase 
 Scores in [50,80] → Standard pay increase 
 Scores < 50 → No pay increase 
The company designed the system with the expectation that  25% would get merit 
increases, 65% would get standard increases and 10% no increases. The actual results in a 
survey of the 600 instances (after several years of doing this) was: 
 n1 = 193; n2 = 365; n3 = 42. 
(a) Test these data at the 95% level as to whether the actual pay increases differed 
significantly from the desired outcomes (indicating to management that they had better 
change the test...) 
(b) Construct a 95% confidence interval for the merit pay outcome. 
 
Solution 
(a) n =  

           k = Number of outcomes =  
          

 P1 =  
          P2 =  

          P3 =  
          

 H0: 
 
                                                                    

 Ha: 
 
                                                                    

 E(x1) = nP1 =  
           

          =  
          

 E(x2) = nP2 =  
           

          =  
          

 E(x3) = nP3 =  
           

          =  
          

      ≈2 = 
[n1 - E(x1)]

2

E(x1)
  + 

[n2 - E(x2)]
2

E(x2)
  + 

[n3 - E(x3)]
2

E(x3)
   

=  
[ ] 

          -  
         

2

 
         

   + 
[ ] 

          -  
         

2

 
         

  + 
[ ] 

          -  
         

2

 
         

  

 =  
                       +  

                       +  
                       

 =  
                       

Critical value: 
 df = k-1 =  

          

 ≈å
2 =  

                 

Rejection region: 

  
Conclusion: 
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(b) Think of this as a test with two outcomes: Success = Merit pay outcome (outcome 
#1); Failure = any of the other two. Then we have a binomial distribution, which we 
approximate with a normal distribution. The confidence interval for x1 can now be 
computed using the binomial distribution confidence interval: 

 p̂ ± zå/2
p(1-p)

n   

where  
 p̂ = Probability of success (observed) =  

                 

 n =  
          zå/2 = z____ =  

          

 ß
 

 p̂ = 
p̂(1-p̂)

n    

  = 

 
                 ×  

                
 
         

 ‡   
                 

 
This gives the CI as 
 CI =                       ±                                                  

  ‡                       ±                       

  ‡ [                      ,                      ] 
 
Note We can use the above procedure to compare two probability distributions as in the 
textbook: Think of one of them as the observed set of probabilities and the other as the 
hypothesized set of probabilities. As far as rejecting the null hypothesis is concerned, it 
does not mater which set is which. 
 
Testing for Independence 
In QM I we all saw tables like following:  
 
Example 1 A survey of 100 stocks shows the following performance after one year 
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 Increased  
≥ 20% 

Stayed Within 
±20% 

Decreased  
≥ 20% 

Totals 

Pharmaceutical 
Companies 

n11 = 10 n12 = 30 n13 =10 50 

Electronic 
Companies 

n21 = 5 n22 = 0 n23 = 5 10 

Banking Company n31 = 15 n32 = 10 n33 = 15 40 
Totals 30 40 30 n = 100 

 
Associated the cells are probabilities given by 

 pij = 
nij
n   (n = total sample size = 100 here) 

These are called marginal probabilities. Let us designate these probabilities as follows: 
 

 Increased  
≥ 20% 

Stayed Within 
±20% 

Decreased  
≥ 20% 

Totals 

Pharmaceutical 
Companies 

p11 p12 p13 PR1 

Electronic 
Companies 

p21 p22 p23 PR2 

Banking Company p31 p32 p33 
 

PR3 

Totals PC1 PC2 PC3 1 
 
In QM I we were asked such questions as "are "Increased>20%" and "Banking 
Company" independent? In real life, they were practically always dependent, since the 
requirement for independence is that p11 = PR1PC1 etc., and getting exact equality would 
be next-to impossible, given random errors. Instead, we ask the question in the form of a 
hypothesis: 
 
 H0: The row events are independent of the column events. 
 Ha: At least one of the row events is not independent of a column event. 
 
Mathematically, H0 means that 
 pij = PRiPCj (recalling QM I) for every pair (i, j) 
 
For this example, it means: 
 
 H0: The performance of a stock does not depend on the type of stock 
 Ha: The performance of a stock does depend on the type of stock 
 
We use, as estimates of the marginal probabilities, the relative frequencies found in the 
table above, and compute a test statistic. 
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 ≈2 = ∑
i,j

 
 
[nij - E(xij)]

2

E(xij)
  or ≈2 = ∑

i,j

 
 
n[pij - PRiPCj]

2

PRiPCj
  

where E(xij) = nPRiPCj = Expected frequency.  (Note that this is not the same as the 
observed frequency pij.) 
 
Q How many degrees of freedom are there? 
A If we are thinking of the Pri and Pcj as fixed, the last probability in each row and 
column is determined by the others, and so df = (r-1)(c-1). In this example, df = (3-
1)(3-1) = 4. 
 
Worksheet 2 — Testing for Independence 
Test the above data for statistical independence. 
 
We use Excel as follows (careful with the totals!) 
 
Observed Freq     

 Incr Same Decr Totals 
Pharmaceutical 10 30 10 50 
Electronic 5 0 5 15 
Banking 15 10 15 40 
Totals 30 40 30 100 
     
     

Expected Freq     
 Incr Same Decr Totals 

Pharmaceutical     
Electronic     
Banking     
Totals     

     
     

[nij - E(xij)]
2

E(xij)
  

    

 Incr Same Decr Totals 
Pharmaceutical     
Electronic     
Banking     
Totals     
 
 ≈2 =  

                 
  
Critical value: 
 df = (r-1)(c-1) =  

          

 ≈å
2 =  

                 

Rejection region: 
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Conclusion: 
 
 
 
 
Here is a plot of the observed data: 
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Had they been statistically independent, the graphs would have been close to parallel 
 
 
Example 2 (Independent Events) 
Here is some adjusted data that gives no rejection of H0 (try it on your spreadsheet —if it 
is set up properly, you need do nothing except enter the given data in the unshaded cells: 
 

 Incr Same Decr Totals 
Pharmaceutical 10 7 10 27 
Electronic 5 3 5 13 
Banking 15 10 15 40 
Totals 30 20 30 80 
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Exercises for this topic 
Multinomial Distributions: p. 452, #3, #6 
 
Independence: p. 470 #14 Include a plot of the observed data.  
 
 
Excel Assignment 3  
Uncovering Tax Fraud using Benford's Law and Chi Square 
 You are a tax fraud specialist working for the Internal Revenue Service (IRS), and 
have just been handed a portion of the tax return from Colossal Conglomerate. The 
agency suspects that the portion you were handed may be fraudulent, and would like your 
opinion. Is there any mathematical test, you wonder, that can point to a suspicious tax 
return based on nothing more than the numbers entered?  
 You decide, on an impulse, to make a list of the first digits of all the numbers 
entered in the portion of the Colossal Conglomerate tax return (there are 625 of them). 
You first reason that, if the tax return is an honest one, the first digits of the numbers 
should be uniformly distributed. More precisely, if the experiment consists of selecting a 
number at random from the tax return, and the random variable X is defined to be the first 
digit of the selected number, then X should have the following probability distribution:  

 
y  1 2 3 4 5 6 7 8 9 
P(X=x)  1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9 1/9 
 
You then do a quick calculation based on this probability distribution, and find an 
expected value of E(X) = 5.  
 Next, you turn to the Colossal Conglomerate return data and calculate the relative 
frequency (experimental probability) of the actual numbers in the tax return. You find the 
following results. 
 

Colossal Conglomerate Return 
y  1 2 3 4 5 6 7 8 9 
P(Y=y)  0.31 0.16 0.13 0.11 0.07 0.07 0.05 0.06 0.04 
 
 It certainly does look suspicious! For one thing, the smaller digits (especially 1) 
seem to occur a lot more often than any of the larger digits. Moreover, when you compute 
the expected value, you obtain E(Y) = 3.42, considerably lower than the value of 5 you 
predicted. Gotcha! 
 You are about to file a report recommending a detailed audit of Colossal 
Conglomerate when you recall an article you once read about first digits in lists of 
numbers. The article dealt with a remarkable discovery in 1938 by Dr. Frank Benford, a 
physicist at the General Electric company. What Dr. Benford noticed was that the pages 
of logarithm tables that listed numbers starting with the digits 1 and 2 tended to be more 
soiled and dog-eared than the pages whose listed numbers started with larger digits—say, 
8. For some reason, numbers starting with low digits seemed more prevalent than 
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numbers starting with high digits. He subsequently  analyzed more than 20,000 sets of 
numbers, such as tables of baseball statistics, listings of widths of rivers, half-lives of 
radioactive elements, street addresses, and numbers in magazine articles. The result was 
always the same: inexplicably, numbers starting with low digits tended to appear more 
frequently than the high ones, with numbers beginning with the digit 1 most prevalent of 
all.5 Moreover, the expected value of the first digit was not the expected 5, but 3.44.  
 Since the first digits in Colossal Conglomerate's return have an expected value of 
3.42; very close to Benford's value, it might appear that your suspicion was groundless 
after all. (Back to the drawing board...) 
 Out of curiosity, you decide to investigate Benford's discovery more carefully. 
What you find is that Benford did more than simply observe a strange phenomenon in 
lists of numbers. He went further and derived the following formula for the probability 
distribution of first digits in lists of numbers.  
 
 P(X=x) = log(1 + 1/x) (x = 1, 2, ..., 9) 
 
You compute these probabilities, and find the following distribution. 
 
x  1 2 3 4 5 6 7 8 9 
P(X=x)  0.30 0.18 0.12 0.10 0.08 0.07 0.06 0.05 0.05 

 
(a) Give a bar graph which compares the probabilities of the first digits predicted by 
Benford's law with those observed in the tax return. It should look something like the 
following (although the data are different). 

 
(b) Apply a Chi-Square test to the hypothesis that p(X=1), p(X=2), ... ,p(X=9) have the 
values specified by Benford's law at the 95% significance level. Use the Excel setup 
shown below. (Note that n = 625 here and is entered into the cell that calculates ≈2.) 
What do you conclude about Colossal Conglomerate's tax return? 
 
                                                
5 The does not apply to all lists of numbers. For instance, a list of randomly chosen numbers between 1 and 
999 will have first digits uniformly distributed between 1 and 9.  
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 (c) Repeat parts (a) and (b) for the Honest Growth Funds Stockholder Report (n = 400) 
where the distribution of first digits is shown below. 
 

Honest Growth Funds Return 
y  1 2 3 4 5 6 7 8 9 
P(Y=y)  0.28 0.16 0.1 0.11 0.07 0.09 0.05 0.07 0.07 
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14. Cyclic Fluctuations & Trigonometric Models   
 
Seasonal linear models do not work well to predict smooth cyclic fluctuations because, 
their graphs are generally sawtooth shapes (see the graph in the preceding section) 
whereas within each cycle, we would like to model a gradual increase and then decrease 
(see any of the graphs that illustrated Ct above). 
 y = Tt + Ct  
 
To model Ct we use a trigonometric model. Before we can do this we need to know the 
period P of the cyclical fluctuations. If f(t) is a function of t, then its period P is the 
smallest positive number P such that f(t+P) = f(t) for every t (assuming such a P exists). 
If such a P exists, we refer to f(t) as periodic. For instance, if t is time in months, then 
many business-related time series are periodic with period P = 12. 
 
Modeling Periodic Fluctuations 
If the period is known to be P, then we use 
 

 Ct = ∫0 + ∫1cos⎝
⎛

⎠
⎞2πt

P  + ∫2sin⎝
⎛

⎠
⎞2πt

P  
 
The amplitude (heights of peaks) and phase shift (location of first peak) are determined 
by ∫1 and ∫2, while ∫0 determines the baseline (level about which fluctuations occur). 
 
 
Example 1 
Go back to the utilities data in  
 www.zweigmedia.com/qm203 → Utilities 
but this time we do trigonometric modeling for a model of the form 
 

 y = Tt + Ct =  ∫0 + ∫1t + ∫2cos⎝
⎛

⎠
⎞2πt

P  + ∫3sin⎝
⎛

⎠
⎞2πt

P  
 
where P = 2 (note that t is in quarters) and the period is 6 months (2 quarters): 
 
Setup  

 
(Use a similar formula for Sin) 
 
After the regression, which we pasted in cell A52 we use the above formula to get he 
predicted y-values:  
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Resulting fit: 

 

 
 
Q  Wait a minute! This looks the same as the seasonal regression model. How come? 
A The trouble is that we only have data by the quarter, following the patters 
high/low/high/low... which, if you model by a sine wave, gives the same zigzag shape as 
linear regression above.  
 
There is another serious issue with this data: Look at the coefficient of ∫3!!! Its p-value is 
also ridiculously high, so it really looks like that term should not be there. (Reason: for all 

the data points we used, the value of sin⎝
⎛

⎠
⎞2πt

P  is theoretically zero, which Excel renders as 
something very close to zero.  
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But using zero as an independent variable in regression is always asking for trouble!! 
 
So we immediately jettison the sine term and repeat the regression to get a more 
acceptable result: 

 
 
Notice that the adjusted r2 has increased slightly (although as expected the actual r2 has 
decreased..) 
 
If we had had some in-between data we would have seen the curved fluctuations more 
clearly). In fact, here is the actual graph of the regression model 
  

 y = 77.4 + 1.65t - 9.01 cos⎝
⎛

⎠
⎞2πt

2  
    = 77.4 + 1.65t - 9.01 cos (πt) 
  

 
y = 77.4 + 1.65t - 9.01 cos (πt) 
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Exercise for this topic: 
Get the pollen count data from 
 www.zweigmedia.com/qm203 → Airline Empty Seat Volume 
The goal here is to model the empty seat volume using  a model of the form 

 y = ∫0 + ∫1t + ∫2cos⎝
⎛

⎠
⎞2πt

P  + ∫3sin⎝
⎛

⎠
⎞2πt

P  
for a suitable P.  
(a) Obtain the regression.  
(b) Graph the regression function versus time. 
(c) Identify the secular trend. What does it say about the trend in empty seats? 
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Normal Distribution: P(Z ≤ z)  Excel: =NORMSDIST(z) 
Negative z  

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 
-0.0 0.50000 0.49601 0.49202 0.48803 0.48405 0.48006 0.47608 0.47210 0.46812 0.46414 
-0.1 0.46017 0.45620 0.45224 0.44828 0.44433 0.44038 0.43644 0.43251 0.42858 0.42465 
-0.2 0.42074 0.41683 0.41294 0.40905 0.40517 0.40129 0.39743 0.39358 0.38974 0.38591 
-0.3 0.38209 0.37828 0.37448 0.37070 0.36693 0.36317 0.35942 0.35569 0.35197 0.34827 
-0.4 0.34458 0.34090 0.33724 0.33360 0.32997 0.32636 0.32276 0.31918 0.31561 0.31207 
-0.5 0.30854 0.30503 0.30153 0.29806 0.29460 0.29116 0.28774 0.28434 0.28096 0.27760 
-0.6 0.27425 0.27093 0.26763 0.26435 0.26109 0.25785 0.25463 0.25143 0.24825 0.24510 
-0.7 0.24196 0.23885 0.23576 0.23270 0.22965 0.22663 0.22363 0.22065 0.21770 0.21476 
-0.8 0.21186 0.20897 0.20611 0.20327 0.20045 0.19766 0.19489 0.19215 0.18943 0.18673 
-0.9 0.18406 0.18141 0.17879 0.17619 0.17361 0.17106 0.16853 0.16602 0.16354 0.16109 

-1 0.15866 0.15625 0.15386 0.15151 0.14917 0.14686 0.14457 0.14231 0.14007 0.13786 
-1.1 0.13567 0.13350 0.13136 0.12924 0.12714 0.12507 0.12302 0.12100 0.11900 0.11702 
-1.2 0.11507 0.11314 0.11123 0.10935 0.10749 0.10565 0.10383 0.10204 0.10027 0.09853 
-1.3 0.09680 0.09510 0.09342 0.09176 0.09012 0.08851 0.08692 0.08534 0.08379 0.08226 
-1.4 0.08076 0.07927 0.07780 0.07636 0.07493 0.07353 0.07215 0.07078 0.06944 0.06811 
-1.5 0.06681 0.06552 0.06426 0.06301 0.06178 0.06057 0.05938 0.05821 0.05705 0.05592 
-1.6 0.05480 0.05370 0.05262 0.05155 0.05050 0.04947 0.04846 0.04746 0.04648 0.04551 
-1.7 0.04457 0.04363 0.04272 0.04182 0.04093 0.04006 0.03920 0.03836 0.03754 0.03673 
-1.8 0.03593 0.03515 0.03438 0.03362 0.03288 0.03216 0.03144 0.03074 0.03005 0.02938 
-1.9 0.02872 0.02807 0.02743 0.02680 0.02619 0.02559 0.02500 0.02442 0.02385 0.02330 

-2 0.02275 0.02222 0.02169 0.02118 0.02068 0.02018 0.01970 0.01923 0.01876 0.01831 
-2.1 0.01786 0.01743 0.01700 0.01659 0.01618 0.01578 0.01539 0.01500 0.01463 0.01426 
-2.2 0.01390 0.01355 0.01321 0.01287 0.01255 0.01222 0.01191 0.01160 0.01130 0.01101 
-2.3 0.01072 0.01044 0.01017 0.00990 0.00964 0.00939 0.00914 0.00889 0.00866 0.00842 
-2.4 0.00820 0.00798 0.00776 0.00755 0.00734 0.00714 0.00695 0.00676 0.00657 0.00639 
-2.5 0.00621 0.00604 0.00587 0.00570 0.00554 0.00539 0.00523 0.00508 0.00494 0.00480 
-2.6 0.00466 0.00453 0.00440 0.00427 0.00415 0.00402 0.00391 0.00379 0.00368 0.00357 
-2.7 0.00347 0.00336 0.00326 0.00317 0.00307 0.00298 0.00289 0.00280 0.00272 0.00264 
-2.8 0.00256 0.00248 0.00240 0.00233 0.00226 0.00219 0.00212 0.00205 0.00199 0.00193 
-2.9 0.00187 0.00181 0.00175 0.00169 0.00164 0.00159 0.00154 0.00149 0.00144 0.00139 

-3 0.00135 0.00131 0.00126 0.00122 0.00118 0.00114 0.00111 0.00107 0.00104 0.00100 
-3.1 0.00097 0.00094 0.00090 0.00087 0.00084 0.00082 0.00079 0.00076 0.00074 0.00071 
-3.2 0.00069 0.00066 0.00064 0.00062 0.00060 0.00058 0.00056 0.00054 0.00052 0.00050 
-3.3 0.00048 0.00047 0.00045 0.00043 0.00042 0.00040 0.00039 0.00038 0.00036 0.00035 
-3.4 0.00034 0.00032 0.00031 0.00030 0.00029 0.00028 0.00027 0.00026 0.00025 0.00024 
-3.5 0.00023 0.00022 0.00022 0.00021 0.00020 0.00019 0.00019 0.00018 0.00017 0.00017 
-3.6 0.00016 0.00015 0.00015 0.00014 0.00014 0.00013 0.00013 0.00012 0.00012 0.00011 
-3.7 0.00011 0.00010 0.00010 0.00010 0.00009 0.00009 0.00008 0.00008 0.00008 0.00008 
-3.8 0.00007 0.00007 0.00007 0.00006 0.00006 0.00006 0.00006 0.00005 0.00005 0.00005 
-3.9 0.00005 0.00005 0.00004 0.00004 0.00004 0.00004 0.00004 0.00004 0.00003 0.00003 
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Positive z  
z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 

0.0 0.50000 0.50399 0.50798 0.51197 0.51595 0.51994 0.52392 0.52790 0.53188 0.53586 
0.1 0.53983 0.54380 0.54776 0.55172 0.55567 0.55962 0.56356 0.56749 0.57142 0.57535 
0.2 0.57926 0.58317 0.58706 0.59095 0.59483 0.59871 0.60257 0.60642 0.61026 0.61409 
0.3 0.61791 0.62172 0.62552 0.62930 0.63307 0.63683 0.64058 0.64431 0.64803 0.65173 
0.4 0.65542 0.65910 0.66276 0.66640 0.67003 0.67364 0.67724 0.68082 0.68439 0.68793 
0.5 0.69146 0.69497 0.69847 0.70194 0.70540 0.70884 0.71226 0.71566 0.71904 0.72240 
0.6 0.72575 0.72907 0.73237 0.73565 0.73891 0.74215 0.74537 0.74857 0.75175 0.75490 
0.7 0.75804 0.76115 0.76424 0.76730 0.77035 0.77337 0.77637 0.77935 0.78230 0.78524 
0.8 0.78814 0.79103 0.79389 0.79673 0.79955 0.80234 0.80511 0.80785 0.81057 0.81327 
0.9 0.81594 0.81859 0.82121 0.82381 0.82639 0.82894 0.83147 0.83398 0.83646 0.83891 
1.0 0.84134 0.84375 0.84614 0.84849 0.85083 0.85314 0.85543 0.85769 0.85993 0.86214 
1.1 0.86433 0.86650 0.86864 0.87076 0.87286 0.87493 0.87698 0.87900 0.88100 0.88298 
1.2 0.88493 0.88686 0.88877 0.89065 0.89251 0.89435 0.89617 0.89796 0.89973 0.90147 
1.3 0.90320 0.90490 0.90658 0.90824 0.90988 0.91149 0.91308 0.91466 0.91621 0.91774 
1.4 0.91924 0.92073 0.92220 0.92364 0.92507 0.92647 0.92785 0.92922 0.93056 0.93189 
1.5 0.93319 0.93448 0.93574 0.93699 0.93822 0.93943 0.94062 0.94179 0.94295 0.94408 
1.6 0.94520 0.94630 0.94738 0.94845 0.94950 0.95053 0.95154 0.95254 0.95352 0.95449 
1.7 0.95543 0.95637 0.95728 0.95818 0.95907 0.95994 0.96080 0.96164 0.96246 0.96327 
1.8 0.96407 0.96485 0.96562 0.96638 0.96712 0.96784 0.96856 0.96926 0.96995 0.97062 
1.9 0.97128 0.97193 0.97257 0.97320 0.97381 0.97441 0.97500 0.97558 0.97615 0.97670 
2.0 0.97725 0.97778 0.97831 0.97882 0.97932 0.97982 0.98030 0.98077 0.98124 0.98169 
2.1 0.98214 0.98257 0.98300 0.98341 0.98382 0.98422 0.98461 0.98500 0.98537 0.98574 
2.2 0.98610 0.98645 0.98679 0.98713 0.98745 0.98778 0.98809 0.98840 0.98870 0.98899 
2.3 0.98928 0.98956 0.98983 0.99010 0.99036 0.99061 0.99086 0.99111 0.99134 0.99158 
2.4 0.99180 0.99202 0.99224 0.99245 0.99266 0.99286 0.99305 0.99324 0.99343 0.99361 
2.5 0.99379 0.99396 0.99413 0.99430 0.99446 0.99461 0.99477 0.99492 0.99506 0.99520 
2.6 0.99534 0.99547 0.99560 0.99573 0.99585 0.99598 0.99609 0.99621 0.99632 0.99643 
2.7 0.99653 0.99664 0.99674 0.99683 0.99693 0.99702 0.99711 0.99720 0.99728 0.99736 
2.8 0.99744 0.99752 0.99760 0.99767 0.99774 0.99781 0.99788 0.99795 0.99801 0.99807 
2.9 0.99813 0.99819 0.99825 0.99831 0.99836 0.99841 0.99846 0.99851 0.99856 0.99861 
3.0 0.99865 0.99869 0.99874 0.99878 0.99882 0.99886 0.99889 0.99893 0.99896 0.99900 
3.1 0.99903 0.99906 0.99910 0.99913 0.99916 0.99918 0.99921 0.99924 0.99926 0.99929 
3.2 0.99931 0.99934 0.99936 0.99938 0.99940 0.99942 0.99944 0.99946 0.99948 0.99950 
3.3 0.99952 0.99953 0.99955 0.99957 0.99958 0.99960 0.99961 0.99962 0.99964 0.99965 
3.4 0.99966 0.99968 0.99969 0.99970 0.99971 0.99972 0.99973 0.99974 0.99975 0.99976 
3.5 0.99977 0.99978 0.99978 0.99979 0.99980 0.99981 0.99981 0.99982 0.99983 0.99983 
3.6 0.99984 0.99985 0.99985 0.99986 0.99986 0.99987 0.99987 0.99988 0.99988 0.99989 
3.7 0.99989 0.99990 0.99990 0.99990 0.99991 0.99991 0.99992 0.99992 0.99992 0.99992 
3.8 0.99993 0.99993 0.99993 0.99994 0.99994 0.99994 0.99994 0.99995 0.99995 0.99995 
3.9 0.99995 0.99995 0.99996 0.99996 0.99996 0.99996 0.99996 0.99996 0.99997 0.99997 
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t-Statistic  Excel: =TINV(2*α,df)  
df 0.1 0.05 0.01 0.025 0.005 
1 3.078 6.314 31.821 12.706 63.656 
2 1.886 2.920 6.965 4.303 9.925 
3 1.638 2.353 4.541 3.182 5.841 
4 1.533 2.132 3.747 2.776 4.604 
5 1.476 2.015 3.365 2.571 4.032 
6 1.440 1.943 3.143 2.447 3.707 
7 1.415 1.895 2.998 2.365 3.499 
8 1.397 1.860 2.896 2.306 3.355 
9 1.383 1.833 2.821 2.262 3.250 

10 1.372 1.812 2.764 2.228 3.169 
11 1.363 1.796 2.718 2.201 3.106 
12 1.356 1.782 2.681 2.179 3.055 
13 1.350 1.771 2.650 2.160 3.012 
14 1.345 1.761 2.624 2.145 2.977 
15 1.341 1.753 2.602 2.131 2.947 
16 1.337 1.746 2.583 2.120 2.921 
17 1.333 1.740 2.567 2.110 2.898 
18 1.330 1.734 2.552 2.101 2.878 
19 1.328 1.729 2.539 2.093 2.861 
20 1.325 1.725 2.528 2.086 2.845 
21 1.323 1.721 2.518 2.080 2.831 
22 1.321 1.717 2.508 2.074 2.819 
23 1.319 1.714 2.500 2.069 2.807 
24 1.318 1.711 2.492 2.064 2.797 
25 1.316 1.708 2.485 2.060 2.787 
26 1.315 1.706 2.479 2.056 2.779 
27 1.314 1.703 2.473 2.052 2.771 
28 1.313 1.701 2.467 2.048 2.763 
29 1.311 1.699 2.462 2.045 2.756 
30 1.310 1.697 2.457 2.042 2.750 
31 1.309 1.696 2.453 2.040 2.744 
32 1.309 1.694 2.449 2.037 2.738 
33 1.308 1.692 2.445 2.035 2.733 
34 1.307 1.691 2.441 2.032 2.728 
35 1.306 1.690 2.438 2.030 2.724 
40 1.303 1.684 2.423 2.021 2.704 
45 1.301 1.679 2.412 2.014 2.690 
50 1.299 1.676 2.403 2.009 2.678 
75 1.293 1.665 2.377 1.992 2.643 
100 1.290 1.660 2.364 1.984 2.626 
200 1.286 1.653 2.345 1.972 2.601 

1000 1.282 1.646 2.330 1.962 2.581 
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Critical Values for Durbin-Watson (å = 0.05) 

 
k = 1 k = 2 k = 3 k = 4 k = 5 

nr dL dU dL dU dL dU dL dU dL dU 
15 1.08 1.36 0.95 1.54 0.81 1.75 0.69 1.98 0.56 2.22 
16 1.11 1.37 0.98 1.54 0.86 1.73 0.73 1.94 0.62 2.16 
17 1.13 1.38 1.02 1.54 0.90 1.71 0.78 1.90 0.66 2.10 
18 1.16 1.39 1.05 1.54 0.93 1.70 0.82 1.87 0.71 2.06 
19 1.18 1.40 1.08 1.54 0.97 1.69 0.86 1.85 0.75 2.02 
20 1.20 1.41 1.10 1.54 1.00 1.68 0.89 1.83 0.79 1.99 
21 1.22 1.42 1.13 1.54 1.03 1.67 0.93 1.81 0.83 1.96 
22 1.24 1.43 1.15 1.54 1.05 1.66 0.96 1.80 0.86 1.94 
23 1.26 1.44 1.17 1.54 1.08 1.66 0.99 1.79 0.90 1.92 
24 1.27 1.45 1.19 1.55 1.10 1.66 1.01 1.78 0.93 1.90 
25 1.29 1.45 1.21 1.55 1.12 1.65 1.04 1.77 0.95 1.89 
26 1.30 1.46 1.22 1.55 1.14 1.65 1.06 1.76 0.98 1.87 
27 1.32 1.47 1.24 1.56 1.16 1.65 1.08 1.75 1.00 1.86 
28 1.33 1.48 1.26 1.56 1.18 1.65 1.10 1.75 1.03 1.85 
29 1.34 1.48 1.27 1.56 1.20 1.65 1.12 1.74 1.05 1.84 
30 1.35 1.49 1.28 1.57 1.21 1.65 1.14 1.74 1.07 1.83 
31 1.36 1.50 1.30 1.57 1.23 1.65 1.16 1.74 1.09 1.83 
32 1.37 1.50 1.31 1.57 1.24 1.65 1.18 1.73 1.11 1.82 
33 1.38 1.51 1.32 1.58 1.26 1.65 1.19 1.73 1.13 1.81 
34 1.39 1.51 1.33 1.58 1.27 1.65 1.21 1.73 1.14 1.81 
35 1.40 1.52 1.34 1.58 1.28 1.65 1.22 1.73 1.16 1.80 
36 1.41 1.52 1.35 1.59 1.30 1.65 1.24 1.73 1.18 1.80 
37 1.42 1.53 1.36 1.59 1.31 1.66 1.25 1.72 1.19 1.80 
38 1.43 1.54 1.37 1.59 1.32 1.66 1.26 1.72 1.20 1.79 
39 1.44 1.54 1.38 1.60 1.33 1.66 1.27 1.72 1.22 1.79 
40 1.44 1.54 1.39 1.60 1.34 1.66 1.29 1.72 1.23 1.79 
45 1.48 1.57 1.43 1.62 1.38 1.67 1.34 1.72 1.29 1.78 
50 1.50 1.59 1.46 1.63 1.42 1.67 1.38 1.72 1.33 1.77 
55 1.53 1.60 1.49 1.64 1.45 1.68 1.41 1.72 1.37 1.77 
60 1.55 1.62 1.51 1.65 1.48 1.69 1.44 1.73 1.41 1.77 
65 1.57 1.63 1.54 1.66 1.50 1.70 1.47 1.73 1.44 1.77 
70 1.58 1.64 1.55 1.67 1.52 1.70 1.49 1.74 1.46 1.77 
75 1.60 1.65 1.57 1.68 1.54 1.71 1.52 1.74 1.49 1.77 
80 1.61 1.66 1.59 1.69 1.56 1.72 1.53 1.74 1.51 1.77 
85 1.62 1.67 1.60 1.70 1.58 1.72 1.55 1.75 1.53 1.77 
90 1.64 1.68 1.61 1.70 1.59 1.73 1.57 1.75 1.54 1.78 
95 1.65 1.69 1.62 1.71 1.60 1.73 1.58 1.76 1.56 1.78 
100 1.65 1.69 1.63 1.72 1.61 1.74 1.59 1.76 1.57 1.78 
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Critical values of F (å = 0.05) 
Excel: =FINV(0.05,dfn,dfd) 

df     Numerator     → 

 1 2 3 4 5 6 
1 161.446 199.499 215.707 224.583 230.160 233.988 
2 18.513 19.000 19.164 19.247 19.296 19.329 
3 10.128 9.552 9.277 9.117 9.013 8.941 
4 7.709 6.944 6.591 6.388 6.256 6.163 
5 6.608 5.786 5.409 5.192 5.050 4.950 
6 5.987 5.143 4.757 4.534 4.387 4.284 
7 5.591 4.737 4.347 4.120 3.972 3.866 
8 5.318 4.459 4.066 3.838 3.688 3.581 
9 5.117 4.256 3.863 3.633 3.482 3.374 

10 4.965 4.103 3.708 3.478 3.326 3.217 
11 4.844 3.982 3.587 3.357 3.204 3.095 
12 4.747 3.885 3.490 3.259 3.106 2.996 
13 4.667 3.806 3.411 3.179 3.025 2.915 
14 4.600 3.739 3.344 3.112 2.958 2.848 
15 4.543 3.682 3.287 3.056 2.901 2.790 
16 4.494 3.634 3.239 3.007 2.852 2.741 
17 4.451 3.592 3.197 2.965 2.810 2.699 
18 4.414 3.555 3.160 2.928 2.773 2.661 
19 4.381 3.522 3.127 2.895 2.740 2.628 
20 4.351 3.493 3.098 2.866 2.711 2.599 
21 4.325 3.467 3.072 2.840 2.685 2.573 
22 4.301 3.443 3.049 2.817 2.661 2.549 
23 4.279 3.422 3.028 2.796 2.640 2.528 
24 4.260 3.403 3.009 2.776 2.621 2.508 
25 4.242 3.385 2.991 2.759 2.603 2.490 
26 4.225 3.369 2.975 2.743 2.587 2.474 
27 4.210 3.354 2.960 2.728 2.572 2.459 
28 4.196 3.340 2.947 2.714 2.558 2.445 
29 4.183 3.328 2.934 2.701 2.545 2.432 

Denomi- 
nator 

↓ 

30 4.171 3.316 2.922 2.690 2.534 2.421 
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Studentized Q Distribution (å = 0.05) 
df 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
1 18.0 27.0 32.8 37.1 40.4 43.1 45.4 47.4 49.1 50.6 52.0 53.2 54.3 55.4 
2 6.09 8.33 9.80 10.9 11.7 12.4 13.0 13.5 14.0 14.4 14.8 15.1 15.4 15.7 
3 4.50 5.91 6.83 7.50 8.04 8.48 8.85 9.18 9.46 9.72 9.95 10.2 10.4 10.5 
4 3.93 5.04 5.76 6.29 6.71 7.05 7.35 7.60 7.83 8.03 8.21 8.37 8.53 8.66 
5 3.64 4.60 5.22 5.67 6.03 6.33 6.58 6.80 7.00 7.17 7.32 7.47 7.60 7.72 
6 3.46 4.34 4.90 5.31 5.63 5.90 6.12 6.32 6.49 6.65 6.79 6.92 7.03 7.14 
7 3.34 4.17 4.68 5.06 5.36 5.61 5.82 6.00 6.16 6.30 6.43 6.55 6.66 6.76 
8 3.26 4.04 4.53 4.89 5.17 5.40 5.60 5.77 5.92 6.05 6.18 6.29 6.39 6.48 
9 3.20 3.95 4.42 4.76 5.02 5.24 5.43 5.60 5.74 5.87 5.98 6.09 6.19 6.28 

10 3.15 3.88 4.33 4.65 4.91 5.12 5.31 5.46 5.60 5.72 5.83 5.94 6.03 6.11 
11 3.11 3.82 4.26 4.57 4.82 5.03 5.20 5.35 5.49 5.61 5.71 5.81 5.90 5.98 
12 3.08 3.77 4.20 4.51 4.75 4.95 5.12 5.27 5.40 5.51 5.62 5.71 5.80 5.88 
13 3.06 3.74 4.15 4.45 4.69 4.89 5.05 5.19 5.32 5.43 5.53 5.63 5.71 5.79 
14 3.03 3.70 4.11 4.41 4.64 4.83 4.99 5.13 5.25 5.36 5.46 5.55 5.64 5.71 
15 3.01 3.67 4.08 4.37 4.60 4.78 4.94 5.08 5.20 5.31 5.40 5.49 5.57 5.65 
16 3.00 3.65 4.05 4.33 4.56 4.74 4.90 5.03 5.15 5.26 5.35 5.44 5.52 5.59 
17 2.98 3.63 4.02 4.30 4.52 4.71 4.86 4.99 5.11 5.21 5.31 5.39 5.47 5.54 
18 2.97 3.61 4.00 4.28 4.50 4.67 4.82 4.96 5.07 5.17 5.27 5.35 5.43 5.50 
19 2.96 3.59 3.98 4.25 4.47 4.65 4.79 4.92 5.04 5.14 5.23 5.32 5.39 5.46 
20 2.95 3.58 3.96 4.23 4.45 4.62 4.77 4.90 5.01 5.11 5.20 5.28 5.36 5.43 
24 2.92 3.53 3.90 4.17 4.37 4.54 4.68 4.81 4.92 5.01 5.10 5.18 5.25 5.32 
30 2.89 3.49 3.85 4.10 4.30 4.46 4.60 4.72 4.82 4.92 5.00 5.08 5.15 5.21 
40 2.56 3.44 3.79 4.04 4.23 4.39 4.52 4.64 4.74 4.82 4.90 4.98 5.04 5.11 
60 2.83 3.40 3.74 3.98 4.16 4.31 4.44 4.55 4.65 4.73 4.81 4.88 4.94 5.00 
120 2.80 3.36 3.69 3.92 4.10 4.24 4.36 4.47 4.56 4.64 4.71 4.78 4.84 4.90 
Ï 2.77 3.31 3.63 3.86 4.03 4.17 4.29 4.39 4.47 4.55 4.62 4.69 4.74 4.80 
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Statistical Control Chart Factors 
n A A2 A3 d2 d3 D1 D2 D3 D4 

2 2.121 1.880 2.659 1.128 0.853 0.000 3.686 0.000 3.267 
3 1.732 1.023 1.954 1.693 0.888 0.000 4.358 0.000 2.575 
4 1.500 0.729 1.628 2.059 0.880 0.000 4.698 0.000 2.282 
5 1.342 0.577 1.427 2.326 0.864 0.000 4.918 0.000 2.114 
6 1.225 0.483 1.287 2.534 0.848 0.000 5.079 0.000 2.004 
7 1.134 0.419 1.182 2.704 0.833 0.205 5.204 0.076 1.924 
8 1.061 0.373 1.099 2.847 0.820 0.388 5.307 0.136 1.864 
9 1.000 0.337 1.032 2.970 0.808 0.547 5.394 0.184 1.816 

10 0.949 0.308 0.975 3.078 0.797 0.686 5.469 0.223 1.777 
11 0.905 0.285 0.927 3.173 0.787 0.811 5.535 0.256 1.744 
12 0.866 0.266 0.886 3.258 0.778 0.923 5.594 0.283 1.717 
13 0.832 0.249 0.850 3.336 0.770 1.025 5.647 0.307 1.693 
14 0.802 0.235 0.817 3.407 0.763 1.118 5.696 0.328 1.672 
15 0.775 0.223 0.789 3.472 0.756 1.203 5.740 0.347 1.653 
16 0.750 0.212 0.763 3.532 0.750 1.282 5.782 0.363 1.637 
17 0.728 0.203 0.739 3.588 0.744 1.356 5.820 0.378 1.622 
18 0.707 0.194 0.718 3.640 0.739 1.424 5.856 0.391 1.609 
19 0.688 0.187 0.698 3.689 0.733 1.489 5.889 0.404 1.596 
20 0.671 0.180 0.680 3.735 0.729 1.549 5.921 0.415 1.585 
21 0.655 0.173 0.663 3.778 0.724 1.606 5.951 0.425 1.575 
22 0.640 0.167 0.647 3.819 0.720 1.660 5.979 0.435 1.565 
23 0.626 0.162 0.633 3.858 0.716 1.711 6.006 0.443 1.557 
24 0.612 0.157 0.619 3.895 0.712 1.759 6.032 0.452 1.548 
25 0.600 0.153 0.606 3.931 0.708 1.805 6.056 0.459 1.541 
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Chi-Square 
DF ≈2

0.1 ≈2
0.05 ≈2

0.01 
1 2.7055 3.8415 6.6349 
2 4.6052 5.9915 9.2104 
3 6.2514 7.8147 11.3449 
4 7.7794 9.4877 13.2767 
5 9.2363 11.0705 15.0863 
6 10.6446 12.5916 16.8119 
7 12.0170 14.0671 18.4753 
8 13.3616 15.5073 20.0902 
9 14.6837 16.9190 21.6660 

10 15.9872 18.3070 23.2093 
11 17.2750 19.6752 24.7250 
12 18.5493 21.0261 26.2170 
13 19.8119 22.3620 27.6882 
14 21.0641 23.6848 29.1412 
15 22.3071 24.9958 30.5780 
16 23.5418 26.2962 31.9999 
17 24.7690 27.5871 33.4087 
18 25.9894 28.8693 34.8052 
19 27.2036 30.1435 36.1908 
20 28.4120 31.4104 37.5663 
21 29.6151 32.6706 38.9322 
22 30.8133 33.9245 40.2894 
23 32.0069 35.1725 41.6383 
24 33.1962 36.4150 42.9798 
25 34.3816 37.6525 44.3140 
26 35.5632 38.8851 45.6416 
27 36.7412 40.1133 46.9628 
28 37.9159 41.3372 48.2782 
29 39.0875 42.5569 49.5878 
30 40.2560 43.7730 50.8922 
60 74.3970 79.0820 88.3794 
120 140.2326 146.5673 158.9500 

1000 1057.7240 1074.6794 1106.9690 
 
 


