#[Distributive Law for Real Numbers][Ley distributiva para los números reales]#
#[If $a,$ $b,$ and $c$ are any real numbers, then:][Si $a, b,$ y $c$ son cualquieras números reales, entonces:]#
#[Law][Ley]# |
Examples |
$a(b \pm c) = ab \pm ac$
|
$x(x+1)$\t = $x(x) + x(1) $ \\ \t ${}=x^2 + x$
$x^3(y-x)$\t ${}= x^3(y) - x^3(x) $ \\ \t ${}=x^3y - x^4$
$-7(x+y+z)$
${}= (-7)x + (-7)y + (-7)z$
${}=-7x - 7y - 7z$
$\dfrac{4x^2}{3y}\left(\dfrac{xy^2}{2z} - \dfrac{y}{x}\right)$
${}= \dfrac{4x^2}{3y}\left(\dfrac{xy^2}{2z}\right) - \dfrac{4x^2}{3y}\left(\dfrac{y}{x}\right)$
${}= \dfrac{4x^2\cdot xy^2}{3y\cdot 2z} - \dfrac{4x^2\cdot y}{3y\cdot x}$
${}= \dfrac{4x^3y^2}{6yz} - \dfrac{4x^2y}{3xy}$
${}= \dfrac{2x^3y}{3z} - \dfrac{4x}{3}$
|
$(a \pm b)c = ac \pm bc$
|
$(x+1)y$\t ${}=x(y) + 1(y) $ \\ \t ${}=xy + y$
$(1-3x+x^2)x$
${}=1(x) - 3x(x) + x^2(x)$
${}=x - 3x^2 + x^3$
$\left(\dfrac{xy^2}{2z} + \dfrac{2y}{3x}\right)\dfrac{z}{xy^2}$
${}= \dfrac{xy^2}{2z}\left(\dfrac{z}{xy^2}\right) + \dfrac{2y}{3x}\left(\dfrac{z}{xy^2}\right)$
${}= \dfrac{xy^2\cdot z}{2z\cdot xy^2} + \dfrac{2y\cdot z}{3x\cdot xy^2}$
${}= \dfrac{xy^2z}{2xy^2z} + \dfrac{2yz}{3x^2y^2}$
${}= \dfrac{1}{2} + \dfrac{2z}{3x^2y}$
|