#[Operation][Operación]#
|
#[Symbol][Símbolo]#
|
#[Examples][Ejemplos]#
|
#[Addition, Subtraction, Negative][Suma, Resta, Negativo]#
|
The usual symbols: + and − |
-3+5-8=-6 3-x+y
|
#[Multiplication][Multiplicación]#
|
The asterisk: *. Enter $a \times b$ as a*b.
|
-4*5*2+6=-34 x*y-6*x
|
#[Exponentiation][Exponenciación]#
|
The caret: ^. Enter $a^b$ as a^b.
If the exponent includes sums, differences, and/or products, enclose it in parentheses. #[Enter][Ingresa]# $a^{b+c}$ #[as][como]# a^(b+c)
#[Enter][Ingresa]# $a^{b}+c$ #[as][como]# a^b+c
|
2^3=8 2^x+y
|
Parentheses
|
() only; never square brackets [] or braces {}. Thus, for instance, enter $2[(4 + 3)/2]$ as 2*((4+3)/2).
|
(2*(3+5)-2)/2=7 (2*(x+y))^4
|
Redundant parentheses
|
Parentheses are only necessary to change the order of operations in a formula you enter; otherwise they do nothing. (a/b) = a/b and represents $\dfrac{a}{b}.$
(a)/(b) = a/b and represents $\dfrac{a}{b}.$
(a*b)/c = a*b/c and represents $\dfrac{ab}{c} = a\dfrac{b}{c}.$
(a^b)/c = a^b/c and represents $\dfrac{a^b}{c}.$
|
(1+3)/(2) = (1+3)/2 = $\dfrac{1+3}{2}$
#[but][pero]# 1+3/2 = $1 + \dfrac{3}{2}.$
(3^(4))/(2) = 3^4/2 = $\dfrac{3^4}{2}$
#[but][pero]# 3^(4/2) = $3^{4/2}.$
1-(3^(4x)) = 1-3^(4x) = $1 - 3^{4x}$
#[but][pero]# 1-3^4x = $1 - 3^4x.$
|
Division
|
There are no fraction bars in technology formulas. For the division symbol use the slash /. If the numerator or denominator includes sums, differences, and/or products, enclose it in parentheses. Enter $\dfrac{a}{b}$ as a/b. Enter $\dfrac{a}{b+c}$ as a/(b+c) Enter $\dfrac{a+b}{c}$ as (a+b)/c Enter $\dfrac{a+b}{c+d}$ as (a+b)/(c+d) |
4/(4+5)=4/9 4/4+5=6 (12+6)/3=6 12+6/3=14
|