#[Rule][Regla]#
|
#[Examples][Ejemplos]#
|
#[Comments][Comentarios]#
|
1. $a^ma^n = a^{m+n}$
|
$2^32^2 = 2^{3+2} = 2^5 = 32$
$2^32^{-2} = 2^{3-2} = 2^1 = 2$
$(-9)^4(-9)^{-2} = (-9)^{4-2} = (-9)^2 = 81$
$x^3x^4 = x^{3+4} = x^7$
$x^{-4}x^3 = x^{-4+3} = x^{-1} = \dfrac{1}{x}$
|
#[If the bases in a product match, add the exponents. If the bases do not match the rule does not apply.][Si las bases en un producto son iguales, suma los exponentes. Si no son igulaes las bases, la regla no se aplica.]#
#[To see why this rule holds in the case of positive exponents, notice that][Para intender por qué se aplica esta regla en el caso de exponentes positivos, observa que]#
$a^na^m$
|
$= (a \cdot a\cdot a\ \cdots \ a)(a \cdot a\cdot a\ \cdots \ a)$
|
|
|
|
$= a \cdot a\cdot a\ \cdots \ \cdots \ a$
|
|
|
#[The rule does not apply to sums: ][La regla no se aplica a sumas: ]# $\qquad \quad (a+b)^n \neq a^n+b^n$
|
2. $\dfrac{a^m}{a^n} = a^{m-n}$
(#[if][si]# $a \neq 0$)
|
$\dfrac{2^3}{2^2} = 2^{3-2} = 2^1 = 2$
$\dfrac{x^3}{x^4} = x^{3-4} = x^{-1} = \dfrac{1}{x}$
$\dfrac{2^3}{2^{-2}} = 2^{3-(-2)} = 2^5 = 32$
$\dfrac{x^{-4}}{x^{-3}} = x^{-4-(-3)} = x^{-1} = \dfrac{1}{x}$
$\dfrac{1}{x^{-3}} = \dfrac{x^0}{x^{-3}} = x^{0-(-3)} = x^3$
|
#[If the bases in a quotient match, subtract the exponents. If the bases do not match the rule does not apply.][Si las bases en una cociente son iguales, resta los exponentes. Si no son igulaes las bases, la regla no se aplica.]#
#[Notice that this rule follows from cancellation in the case of positive exponents.][Observa que esta regla sigue de cancelación en el caso de exponentes positivos.]#
#[The rule does not apply to differences: ][La regla no se aplica a diferencias: ]# $\qquad a^m-a^n \neq a^{m-n}$
|
3. $\dfrac{1}{a^n} = a^{-n}$
(#[if][si]# $a \neq 0$)
|
$\dfrac{1}{2^3} = 2^{-3}$
$5^{-2} = \dfrac{1}{5^2} = \dfrac{1}{25}$
$\dfrac{1}{5^-2} = 5^{-(-2)} = 5^2 = 25$
|
#[See "Negative and zero exponents" above.][Ve "Exponentes negativos y cero " arriba.]#
#[Rule 3 is actually a special case of Rule 2:][Regla 3 es en realidad un caso especial de la Regla 2:]#
$\dfrac{1}{a^n}$ |
$=\dfrac{a^0}{a^n}$ | |
|
$=a^{0-n}$ | |
|
$=a^{-n}$ | |
|
4. $(a^n)^m = a^{nm}\ $
|
$(2^3)^2 = 2^{3\times 2} = 2^{6} = 64$
$(x^3)^4 = x^{3 \times 4} = x^{12}$
$(2^{-3})^2 = 2^{(-3)\times2} = 2^{-6} = \dfrac{1}{64}$
$(x^{-3})^{-4} = x^{(-3)\times(-4)} = x^{12}$
|
#[Raising a power to a power corresponds to mutliplying the powers.][Elevar una potencia a una potencia corresponde a multiplicar las potencias.]#
|