Identity | Examples |
$\log_b(xy)$${}= \log_bx + \log_by$
The logarithm of a product equals the sum of the logarithms. |
|
$\log_b\left(\dfrac{x}{y}\right) = \log_bx - \log_by$
#[The logarithm of a quotient equals the difference of the logarithms.][El logaritmo de un cociente es la resta de los logaritmos.]# |
|
$\log_b(x^r) = r\log_bx$
The logarithm of an $p$th power is $p$ times the logarithm. |
|
$\log_bb = 1$ #[and][y]# $\log_b1 = 0$
#[The base $b$ logarithm of $b$ is $1$, and the logarithm of $1$ is $0$.][El logaritmo de $b$ en base $b$ es $1$, y el logaritmo de $1$ es $0$.]# |
|
$\log_b\left(\dfrac{1}{x}\right) = -\log_bx$
The logarithm of a reciprocal is the negative of the logarithm. |
|
$\log_bx = \dfrac{\log_ax}{\log_ab}$
The base $b$ logarithm of $x$ is the logarithm of $x$ over the logarithm of the base. |
|