Algebra of rational functions summarized
The following rules summarize the various rules for manipulating rational expressions. To practice any particular ones or see examples, open a practice session, and under "Practice options", choose the topic you want to concentrate on.
Cancellation rule
If $R$ is any nonzero expression that is a factor of both the numerator and denominator, then you can cancel it to simplify the rational expression:
$\dfrac{P\color{indianred}{R}}{Q\color{indianred}{R}} = \dfrac{P}{Q} \qquad \quad \ \ $
Caution
$R$ must be a
factor and not a summand; For instance,
$\dfrac{P+\color{indianred}{R}}{Q+\color{indianred}{R}} \neq \dfrac{P}{R} \qquad$
Multiplying rational expressions
As is the case with ordinary fractions, we multiply two rational expressions by simply multiplying their numerators and denominators:
$\dfrac{\color{#026fc1}{P}}{\color{#026fc1}{Q}} \times \dfrac{\color{#c1026f}{R}}{\color{#c1026f}{S}} = \dfrac{\color{#026fc1}{P}\color{#c1026f}{R}}{\color{#026fc1}{Q}\color{#c1026f}{S}} \qquad $ \t
Dividing rational expressions
As with ordinary fractions, division by a rational expression means multiplication by its reciprocal:
$\dfrac{\left(\dfrac{\color{#026fc1}{P}}{\color{#026fc1}{Q}}\right)}{\left(\dfrac{\color{#c1026f}{R}}{\color{#c1026f}{S}}\right)} = \dfrac{\color{#026fc1}{P}}{\color{#026fc1}{Q}} \times \dfrac{\color{#c1026f}{S}}{\color{#c1026f}{R}} \qquad$ \t
\\ $\qquad = \dfrac{\color{#026fc1}{P}\color{#c1026f}{S}}{\color{#026fc1}{Q}\color{#c1026f}{R}} \qquad \quad$ \t
Addition and subtraction with common denominator:
$\dfrac{\color{#026fc1}{P}}{\color{#c1026f}{Q}} + \dfrac{\color{#026fc1}{R}}{\color{#c1026f}{Q}} = \dfrac{\color{#026fc1}{P} + \color{#026fc1}{R}}{\color{#c1026f}{Q}} \qquad $ \t
\\
\\ $\dfrac{\color{#026fc1}{P}}{\color{#c1026f}{Q}} - \dfrac{\color{#026fc1}{R}}{\color{#c1026f}{Q}} = \dfrac{\color{#026fc1}{P} - \color{#026fc1}{R}}{\color{#c1026f}{Q}} \qquad $ \t
Addition and subtraction: General case:
$\dfrac{\color{#026fc1}{P}}{\color{#026fc1}{Q}} + \dfrac{\color{#c1026f}{R}}{\color{#c1026f}{S}} = \dfrac{\color{#026fc1}{P}\color{#c1026f}{S} + \color{#026fc1}{Q}\color{#c1026f}{R}}{\color{#026fc1}{Q}\color{#c1026f}{S}} \qquad \quad \ \ $ |
|
$\dfrac{\color{#026fc1}{P}}{\color{#026fc1}{Q}}$ $\dfrac{\color{#c1026f}{R}}{\color{#c1026f}{S}}$
|
|
$\dfrac{\color{#026fc1}{P}}{\color{#026fc1}{Q}}$ $\dfrac{\color{#c1026f}{R}}{\color{#c1026f}{S}}$
|
|
$\dfrac{\color{#026fc1}{P}}{\color{#026fc1}{Q}} - \dfrac{\color{#c1026f}{R}}{\color{#c1026f}{S}} = \dfrac{\color{#026fc1}{P}\color{#c1026f}{S} - \color{#026fc1}{Q}\color{#c1026f}{R}}{\color{#026fc1}{Q}\color{#c1026f}{S}} \qquad \quad \ \ $ |
|
$\dfrac{\color{#026fc1}{P}}{\color{#026fc1}{Q}}$ $\dfrac{\color{#c1026f}{R}}{\color{#c1026f}{S}}$
|
|
$\dfrac{\color{#026fc1}{P}}{\color{#026fc1}{Q}}$ $\dfrac{\color{#c1026f}{R}}{\color{#c1026f}{S}}$
|