#[Let ][Sea ]# $f: \{-4, -3, -2, -1, 0, 1, 2, 3, 4\} \to \mathbb{R}$ be the function specified by the following table:
$x$ \t $f(x)$
\\ $-4$ \t $%4$
\\ $-3$ \t $%5$
\\ $-2$ \t $%6$
\\ $-1$ \t $%7$
\\ $0$ \t $%8$
\\ $1$ \t $%9$
\\ $2$ \t $%10$
\\ $3$ \t $%11$
\\ $4$ \t $%12$
The natural domain of this function consists only of the numbers $-4, -3, -2, -1, 0, 1, 2, 3, 4$, as those are the only values of $x$ for which $f(x)$ is defined.
For example, when $x = -2$, $f(x) = %6$.
So,
$f(-2) = %6$. (Mouse over to highlight corresponding table column.)
Similarly, when $x = 2$, $f(x) = %10$.
So,
Also,
$f(-2+ 2)$ | $= f(0) \qquad$ |
|
| $= %8$ |
|
Whereas |
$f(-2) +f(2) $ | $= %6 + %10$ |
|
| $= %16$ |
|
Some for you: