Horizontal and vertical scaling
Let $c$ be a fixed positive number.
#[Horizontal scaling][Escalamiento horizontal]#
If $c \gt 1,$ then replacing $x$ by the quantity $(cx)$ compresses the graph in the $x$-direction by a factor of $c.$ (Press the button to see it happen when $c = 2$.)
If $c \lt 1,$ then replacing $x$ by the quantity $(cx)$ stretches the graph in the $x$-direction by a factor of $1/c.$ (Press the button to see it happen when $c = 1/2$.)
#[Vertical scaling][Escalamiento vertical]#
If $c \gt 1,$ then replacing $f(x)$ by $cf(x)$ stretches the graph in the $y$-direction by a factor of $c.$ (Press the button to see it happen when $c = 2$.)
If $c \lt 1,$ then replacing $f(x)$ by $cf(x)$ compresses the graph in the $y$-direction by a factor of $1/c.$ (Press the button to see it happen when $c = 1/2$.)
#[Some for you][Algunos para ti]#
The graph of $g(x) = %0$ can be obtained from the graph of $f(x) = %1$ #[as follows:][como sigue:]#
BUTTONS
MESSAGE
#[Here is the graph of][Aquí está la gráfica de]# $f(x)=%1.$
MESSAGE
#[Pick the graph of][Eccoge la gráfica de]# $g(x) = %0$.
MULTIPLECHOICE