Let $f$ be the function of the two variables $x$ and $y$ specified by the following table: †
#[Let ][Sea ]# $f: \{(x,y) \mid x, y$ #[integers with][enteros con]# $1 \le x,y \le 10\ \} \to \mathbb{R}$ be the function specified by the following table: †
 $\qquad\quad x$ → $y$↓ \t 1 \t 2 \t 3 \t 4 \t 5 \t 6 \t 7 \t 8 \t 9 \t 10 \\ 1 \t 161.4 \t 199.5 \t 215.7 \t 224.6 \t 230.2 \t 234 \t 236.8 \t 238.9 \t 240.5 \t 241.9 \\ 2 \t 18.51 \t 19.00 \t 19.16 \t 19.25 \t 19.30 \t 19.33 \t 19.35 \t 19.37 \t 19.38 \t 19.40 \\ 3 \t 10.13 \t 9.552 \t 9.277 \t 9.117 \t 9.013 \t 8.941 \t 8.887 \t 8.845 \t 8.812 \t 8.786 \\ 4 \t 7.709 \t 6.944 \t 6.591 \t 6.388 \t 6.256 \t 6.163 \t 6.094 \t 6.041 \t 5.999 \t 5.964 \\ 5 \t 6.608 \t 5.786 \t 5.409 \t 5.192 \t 5.05 \t 4.95 \t 4.876 \t 4.818 \t 4.772 \t 4.735 \\ 6 \t 5.987 \t 5.143 \t 4.757 \t 4.534 \t 4.387 \t 4.284 \t 4.207 \t 4.147 \t 4.099 \t 4.06 \\ 7 \t 5.591 \t 4.737 \t 4.347 \t 4.12 \t 3.972 \t 3.866 \t 3.787 \t 3.726 \t 3.677 \t 3.637 \\ 8 \t 5.318 \t 4.459 \t 4.066 \t 3.838 \t 3.687 \t 3.581 \t 3.500 \t 3.438 \t 3.388 \t 3.347 \\ 9 \t 5.117 \t 4.256 \t 3.863 \t 3.633 \t 3.482 \t 3.374 \t 3.293 \t 3.230 \t 3.179 \t 3.137 \\ 10 \t 4.965 \t 4.103 \t 3.708 \t 3.478 \t 3.326 \t 3.217 \t 3.135 \t 3.072 \t 3.020 \t 2.978
#[This table, used in the exercises for Section 15.1 in Finite Mathematics and Applied Calculus, is actually a part of a statistical table of the "inverse F distribution" (&alpha = 0.5).][Esta tabla, utilizada en los ejercicios de la Sección 15.1 de Matemáticas finitas y cálculo aplicado, es en realidad parte de una tabla estadística de la "distribución F inversa" (&alfa = 0,5).]# ):

The natural domain of this function consists of the pairs $(x,y)$ of integers with $1 \le x \le 10$, and $1 \le x \le 10$, as those are the only values of $x$ and $y$ for which $f(x,y)$ is defined.

For example, when $(x,y) = (%15,%16)$, $f(x,y) = %17$. So,
$f(%15,%16) = %17$. (Mouse over to highlight corresponding table column.)
Similarly, when $(x,y) = (%18,%19)$, $f(x,y) = %20$. So,
$f(%18,%19) = %20$.
Some for you:
$f(%0,%1)$ = BOX
$f(%3,%4)$ = BOX
$f(%4,%4)$ = BOX
BUTTONS
MESSAGE

$f(%6,%7) - f(%7,%6)$ = BOX
$f(%9,%10) - f(%12,%13)$ = BOX
$f(%9-%12,%10-%13)$ = BOX
BUTTONS
MESSAGE
RANDOMIZE