Regular and absorbing Markov processes
This tutorial: Part B: Regular and absorbing Markov processes
(This topic is also in Section 8.7 in Finite Mathematics and Applied Calculus)
Resources
Matrix algebra tool | Markov system simulation | Markov system computation utility |
Long term behavior of Markov systems
If $P$ is the transition matrix for a Markov system, and if $v ={}$
$vP = v$,
then we refer to $v$ as a steady state (distribution) vector.
#[Q][P]#: Why is such a vector called a "steady state" vector?#[A][R]#: If we look at our simple weather model above, the equation $vP = v$ when $v ={}$
#[A][R]#: To find a steady state distribution vector for a Markov System with transition matrix $P$, we need to find a probability distribution vector $v = {}$
$x + y + z + ...$ \t ${}= 1$
\\
\\ [x, y, z, ...] $P$ \t ${}=$ [x, y, z, ...]
#[(This system of equations is overdetermined because the matrix equation gives a redundant system.)][(Este sistema de ecuaciones está sobredeterminado porque la ecuación matricial da un sistema redundante.)]#
%%Q: It looks like we obtained a unique solution every time we solved for steady state vectors above. Does this mean that there always is a unique steady state vector for every Markov system?%%A: #[Yes and no... It can be proved that every Markov system does have at least one steady state distribution vector, although some Markov systems may have more than one: As a simple example, if our Markov system happens to have the idetntity matrix as its transition matrix $P=I$, then every disttribution vector $v$ is a steady state distribution vector, becuase $vI = v$ for every vector $v$. ][Sí y no... Se puede demostrar que cada sistema Markov tiene al menos un vector de distribución de estado estable, aunque algunos sistemas Markov pueden tener más de uno: Como ejemplo simple, si nuestra sistema Markov tiene como matriz de transición la matriz de identidad $P=I$, entonces cada vector de distribución $v$ es un vector de distribución de estado estable, porque $vI = v$ para cada vector $v$.]# #[However, there is a certain class of Markov systems, called regular Markov systems, that are guaranteed to have unique steady state distribution vectors:][Sin embargo, existe una cierta clase de sistemas Markov, llamados sistemas Markov regulares, que tienen garantizados vectores de distribución de estado estable únicos:]#
Regular Markov systems
#[A Markov system is regular if some power $P^n = P \cdot P \cdot ... \cdot P$ of its transition matrix $P$ has no zero entries. A little thought will convince you that, as there can be no negative entries in any transition matrix, all larger powers of $P$ will have no zero entries either.][Un sistema de Markov es regular si alguna potencia $P^n = P \cdot P \cdot ... \cdot P$ de su matriz de transición $P$ no tiene entradas cero. Si lo piensas un poco, te convencerás de que, como no puede haber entradas negativas en ninguna matriz de transición, todas las potencias mayores de $P$ tampoco tendrán entradas cero.]#
#[If $P$ is not the transition matrix of a regular system, then (1) and (2) above need not be true; for instance, if][Si $P$ no es la matriz de transición de un sistema regular, entonces (1) y (2) anteriores no necesitan ser verdaderos; por ejemplos, si]#
$P ={}$ [0,1,0;0,0,1;1,0,0] ,
#[then (1) fails, as the powers of $P$ cycle through $P$, $P^2$, and $P^3 = I$. If][entonces (1) falla, ya que las potencias de $P$ recorren por $P$, $P^2$ y $P^3 = I$. Si]#
$P ={}$ [1/2,1/2,0;1,0,0;0,0,1]
#[we find][encuentramos]#
$P^{\infty} ={}$[2/3,1/3,0;2/3,1/3,0;0,0,1]
#[giving us two steady-state vectors:][dándonos dos vectores de estado estable:]#
$v_1$ = [2/3,1/3,0]
%%and
$v_2$ = [0,0,1]
Here, for your convenience, is a small copy of the %%malgtool you can use to play with some examples like those above:
Absorbing Markov systems
An absorbing state is a state from which there is a zero probability of exiting. An absorbing Markov system is a Markov system that contains at least one absorbing state, and is such that it is possible to get from each non-absorbing state to some absorbing state in one or more time-steps.
In analyzing an absorbing system, we number the states so that the absorbing states come last. The transition matrix $P$ of an absorbing system can be divided into four blocks as shown:
$P = {}$[
Here, for an absorbing Markov system with $n$ absorbing states and $m$ nonabsorbing states, the four boxed parts of the matrix are the following:
$\ $S$\ $
, $\ $T$\ $
;$\ $0$\ $
,$\ $I$\ $
]- $S$ is the $m \times m$ matrix representing the movement among the nonabsorbing states.
- $I$ is the $n \times n$ identity matrix representing the only possible movement in the absorbing states
- $T$ is the $m \times n$ matrix representing movement from nonabsorbing states to absorbing states
- $0$ is the zero $n \times m$ matrix representing the lack of movement from absorbing states to nonabsorbing states
#[Your turn][Tu turno]#
Now try some of the exercises in Section 8.7 in Finite Mathematics and Applied Calculus.
or move ahead by pressing "Next tutorial" on the sidebar.
Copyright © 2022 Stefan Waner and Steven R. Costenoble