Tutorial: Trigonometric functions, models, and regression
This tutorial: Part B: The six trigonometric functions
The cosine function
In the "bicycle wheel definition of sine" in %%prevtut, we saw that the sine $\sin(t)$ of $t$ was defined as the $y$-coordinate of a marker on the wheel rotated ounterclockwise $t$ units. The cosine, $\cos(t)$, of $t$ is defined in almost the same way, except that this time, we use the $x$-coordinate of the marker on the wheel instead of the $y$-coordinate:
The cosine function
The cosine of a real number $t$ is given by the $x$-coordinate of the point $P$ in the following diagram, in which $t$ is the length of the arc shown.
#[Fundamental relationship between sine and cosine][Relación fundamental entre seno y coseno]#
#[Recall that the $y$-coordinate of $P$ is $\sin(t)$, so the coordinates of the point $P$ in the diagram are $(\cos(t), \sin(t))$. As its distance from the origin is $1$, the distance formula gives us][Recuerda que la coordenada $y$ de $P$ es $\sin(t)$, por lo que las coordenadas del punto $P$ en el diagrama son $(\cos(t), \sin(t))$. Como su distancia al origen es $1$, la fórmula de la distancia nos da]#
#[Notes][Notas]#
#[Square of the distance from $P$ to $(0,0)$][Cuadrado de la distancia de $P$ a $(0,0)$]# \t ${}= 1$
\\ $\left(\cos(t)\right)^2 + \left(\sin(t)\right)^2$ \t ${}= 1$
#[which we write as][que escribimos como]#
$\cos^2(t) + \sin^2(t) = 1 \qquad$ \t #[Fundamental trigonometric identity][Identidad trigonométrica fundamental]#
Graph of the conside function:
As you might expect, the graph of $y = \cos(t)$ has the same cyclical shape as that of $y = \sin(t)$. The only difference between the two is a "phase shift" (see the figure).
y = cos(t)
#[The graph of $y = \sin(t)$ is shown in a lighter shade.][La gráfica de $y = \sin(t)$ se muestra en un tono más claro.]#
-
As we see in the graph, the cosine function is just a shifted sine function: its graph can be obtained from that of sine by shifting it to the left $\pi/2$ units:, the graph of the sine can be obtained by shifting the graph of cosine to the right by $\pi/2$, so
$\displaystyle \cos(t) = \sin\left(t+\frac{\pi}{2}\right)$.
- #[In other words, the cosine function is just a generalized sine function with the same amplitude ($A = 1$), angular velocity ($\omega = 1$) and period ($P = 2\pi$) as $\sin(t)$.][En otras palabras, la función coseno es solo una función seno generalizada con la misma amplitud ($A = 1$), velocidad angular ($\omega = 1$) y período ($P = 2\pi$) que $\sin(t)$.]#
-
Likewise, the graph of the sine can be obtained by shifting the graph of cosine to the right $\pi/2$ units, so
$\displaystyle \sin(t) = \cos\left(t-\frac{\pi}{2}\right)$.
- The graph of $\cos(t)$ is symmetric about the $y$-axis; replacing $t$ by $-t$ gives the same value for $\cos(t)$:
$\displaystyle \cos(-t) = \cos(t)$.By comparison, we saw that the graph of $\sin(t)$ is antisymmetric about the $y$-axis; replacing $t$ by $-t$ results in a sign change:$\displaystyle \sin(-t) = -\sin(t)$.
#[Examples][Ejemplos]#
When $t = 0$ or $2\pi$, the point $P$ is on the $x$-axis with $x$-coordinate $1$, so that
$\cos(0) = \cos(2\pi) = 1$ \gap[20] \t $2\pi$ #[constitutes a complete revolution, or 360°.][constituye una completa revolución, o 360°.]#
When the point $P$ has moved a distance of $\dfrac{\pi}{2}$ in either direction and so makes an angle of 90° with the positive $x$-axis, its $x$-coordinate is 0, so
$\displaystyle \cos\left(\pm\frac{\pi}{2}\right)= 0$ \gap[20] \t $\dfrac{\pi}{2}$ is the radian measure of 90°.
Some for you
Modeling cosine: generalized cosine functions
As we saw in %%prevtut, we can model any sinunsoidal behavior using a generalized sine function, so, strictly speaking, there is no need to use a generlaised cosine function at all. However, there are good mathematical reasons for including cosine in our compendium of modeling functions, and it is also often more convenient to use a consine function to model a particular situation.
Generalized cosine function
#[A generalized cosine function has the following form.][Una función coseno generalizada tiene la siguiente forma.]#
Note Increasing or decreasing $\beta$ (or $\alpha$) by the period $P$ or multiples of $P$ has no effect on the graph (and will be permitted in the interactive exercises) as we would be moving it horizontally that distance.
$f(x) = A\cos\left[\omega(x-\beta)\right] + C$
\\ #[Yes, we are calling the phase shift $\beta$ here as it corresponds to what we previously called $\beta$ in the graph of the generalized sine function.][Sí, estamos llamando al cambio de fase $\beta$ aquí ya que corresponde a lo que previamente llamamos $\beta$ en el gráfico de la función seno generalizada.]#
#[Thus,][Por lo tanto,]#
- $A = {}$ #[amplitude][amplitud]#
- $\omega = {}$ #[angular frequency][frecuencia angular]#
- $\beta = {}$ #[phase shift (horizontal offset; the graph first reaches a maximum $\beta$ units to the right of the $y$-axis).][cambio de fase (desplazamiento horizontal; la gráfica primero alcanza un máximo $\beta$ unidades a la derecha del eje $y$).]#
- $C = {}$ #[vertical offset (the graph is moved $C$ units up).][desplazamiento vertical (la gráfica se mueve $C$ unidades hacia arriba).]#
#[Graph of ][Gráfica de ]# $\bold{f(x) = A\cos\left[\omega(x-\beta)\right] + C = A\sin\left[\omega(x-\alpha)\right] + C}$
$\displaystyle A = \frac{\text{highest value} - \text{lowest value}}{2} \qquad \omega = \frac{2\pi}{P} \qquad \beta = \alpha + \frac{P}{4}$
#[$C = {}$ height of baseline: Average of highest and lowest values][$C = {}$ altura de la línea base: promedio de los valores alto y bajo]#
#[$C = {}$ height of baseline: Average of highest and lowest values][$C = {}$ altura de la línea base: promedio de los valores alto y bajo]#
#[Example][Ejemplo]#
In %%prevtut we modeled the average temperature in Germany with a generalized sine function. This time, let's use a generalized cosine function instead.
$\displaystyle A = \frac{\text{highest value} - \text{lowest value}}{2} \approx \frac{20 - 0}{2} = 10$
\\ $P = 12$
\\ $\displaystyle \omega = \frac{2\pi}{P} = \frac{2\pi}{12} = \frac{\pi}{6}$
\\ $\beta = {}$ #[Value of $t$ at first high point][Valor de $t$ en el primer punto alto]# ${}\approx 6$
\\ $C = {}$ #[Average of highest and lowest values][promedio de los valores alto y bajo]# $\displaystyle \approx \frac{20+0}{2} = 10$.
#[Thus, our approximate model is][Por lo tanto, nuestro modelo aproximado es]#
$f(t)$ \t $\displaystyle {} = A\cos\left[\omega(t-\beta)\right] + C$
\\ \t $\displaystyle {} =10\cos\left[\frac{\pi}{6}(t-6)\right] + 10$.
#[Compare the sine model, from %%prevtut:][Compara el modelo seno, de %%prevtut:]#
$\displaystyle f(t) = 10\sin\left[\frac{\pi}{6}(t-3)\right] + 10$.
The other trigonometric functions
#[We can take ratios and reciprocals of sine and cosine to obtain four new functions. Here they are:][Podemos usar razones y recíprocas del seno y el coseno para obtener cuatro nuevas funciones. Aqui estan:]#
Tangent, cotangent, secant, cosecant
Each of the following is a ratio or reciprocal of sine or cosine functions, and so is not defined at values of $t$ when the denominator is zero. The result is that the graphs of these functions have vertical asymptotes at those singular ("bad") values, shown in red in the graphs below.
#[Graph of][Gráfica de]# $y = \tan(t)$
\\ #[The cotangent of $t$ is defined by][la cotangente de $t$ de define por]# \t
#[Graph of][Gráfica de]# $y = \cotan(t)$
\\ #[The secant of $t$ is defined by][la secante de $t$ de define por]# \t
#[Graph of][Gráfica de]# $y = \sec(t)$
\\ #[The cosecant of $t$ is defined by][la cosecante de $t$ de define por]# \t
#[Graph of][Gráfica de]# $y = \cosec(t)$
#[The tangent of $t$ is defined by][La tangente de $t$ de define por]# \t
$\displaystyle \tan(t) = \frac{\sin(t)}{\cos(t)}$
\\ \t #[Graph of][Gráfica de]# $y = \tan(t)$
$\displaystyle \cotan(t) = \frac{\cos(t)}{\sin(t)}$
\\ \t #[Graph of][Gráfica de]# $y = \cotan(t)$
$\displaystyle \sec(t) = \frac{1}{\cos(t)}$
\\ \t #[Graph of][Gráfica de]# $y = \sec(t)$
$\displaystyle \cosec(t) = \frac{1}{\sin(t)}$
\\ \t #[Graph of][Gráfica de]# $y = \cosec(t)$
Examples
1. $\displaystyle \tan(0) = \frac{\sin(0)}{\cos(0)} = \frac{0}{1} = 0$, whereas
\\ 2. $\displaystyle \tan\left(\frac{\pi}{2}\right) = \frac{\sin(\pi/2)}{\cos(\pi/2)}$ #[is not defined, as][no es definida, porque]# $\displaystyle \cos\left(\frac{\pi}{2}\right)=0$. \t #[Notice that the graph of $\tan$ has a vertical asymptote at][Observe que la gráfica de $\tan$ tiene una asíntota vertical en]# $\dfrac{\pi}{2}.$
\\ 3. $\displaystyle \tan\left(\frac{\pi}{2}\right) = \frac{\sin(\pi/2)}{\cos(\pi/2)}$ #[is not defined, as][no es definida, porque]# $\displaystyle \cos\left(\frac{\pi}{2}\right)=0.$
\\ 4. $\displaystyle \tan\left(\frac{\pi}{4}\right) = \cotan\left(\frac{\pi}{4}\right) = 1,$ #[as][porque]# $\displaystyle \sin\left(\frac{\pi}{4}\right)=cos\left(\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}$.
\\ 5. $\displaystyle \sec\left(\frac{\pi}{3}\right) = \frac{1}{\cos(\pi/3)} = \frac{1}{1/2} = 2$.
\\ 6. $\displaystyle \cosec(0) = \frac{1}{\sin(0)}$ #[is not defined, as][no es definida, porque]# $\sin(0)=0,$ #[whereas][aunque]#
\\ 7. $\displaystyle \sec(0) = \frac{1}{\cos(0)} = \frac{1}{1} = 1$
Now try the exercises in Section 2.5 in Finite Mathematics and Applied Calculus.
or move ahead to the next tutorial by pressing "Next tutorial" on the sidebar.
Last Updated: February 2023
Copyright © 2022 Stefan Waner and Steven R. Costenoble
Copyright © 2022 Stefan Waner and Steven R. Costenoble