Tutorial: Systems of two linear equations in two unknowns
This tutorial: Part B: Solving by elimination
(This topic is also in Section 3.1 in Finite Mathematics or Section 4.1 in Finite Mathematics and Applied Calculus) I don't like this new tutorial. Take me back to the older tutorial (which has no adaptive practice in the game version)!
#[Solving systems with two unknowns by elimination][Solucionar sistemas con dos incógnitas por eliminación]#
%%Q Do we really need another method of solving a system of linear equations?%%A A The problem with the graphical approach is that it only gives approximate solutions; locating the exact point of intersection of two lines would require perfect accuracy, which is impossible in practice. #[The method of elimination is an algebraic procedure to obtain the exact solution(s) of a system of equations in two unknowns by manipulating the equations to eliminate one of the variables ($x$ or $y$).][El método de eliminación es un procedimiento algebraico para obtener la solución exacta de un sistema de ecuaciones con dos incógnitas por manipular las ecuaciones para eliminar una de las variables ($x$ o $y$).]# We will focus mostly on cases where all the coefficients are rational numbers (which include finite or recurring decimals), as such systems reduce us to working with integer coefficients. At the end of this tutorial we will see how solution by elimination works in cases where not all the coefficients are rational.
Solution of systems with rational coefficients
#[Step 1: Get rid of fractions and decimals.][Paso 1: Deshágate de fracciones y decimales.]#
%%Example
\t !r!$\frac{1}{6}x - \frac{1}{3}y$ \t $=$ \t $-\frac{4}{3}$
\\ \t !r!$x + 1.5y$ \t $=$ \t $2.5$
|
![]() |
#[Solving by elimination][Solucionar por eliminación]#
#[To eliminate an unknown means to obtain an equation in which that unknown does not occur. To eliminate an unknown that occurs in both equations, multiply one or both equations by suitable nonzero constant (if necessary) so that adding the resulting equations cancels out ("eliminates") that unknown. Then solve that equation for the remaining variable. Repeat by eliminating the other variable.][Eliminar un desconocido significa obtener una ecuación en la que no ocurre ese desconocido. Para eliminar un desconocido que ocurre en ambas ecuaciones, multiplica una o ambas ecuaciones por constantes adecuadas distintas de cero (si sea necesario) tal que la adición de las ecuaciones resultantes anula ("elimina") aquella incógnita. Luego resuelve la ecuación para la variable restante. Repite por eliminar la otra incógnita.]#
%%Example
#[System][Sistema]#:
#[System][Sistema]#:
$x - 2y$ \t ${}= -8$
\\ $2x + 3y$ \t ${}=5$
#[Solving by elimination][Solucionar por eliminación]#
#[We eliminate $x$. Notice that just adding the equations does not eliminate the $x,$ but results in $3x + y = -3.$ However, if we multiply the first equation by $-2$ we get an equivalent system:][Eliminamos la $x.$ Observa que simplemente sumando las ecuaciones elimina los $x,$ pero resulta en $3x + y = -3.$ Sin embargo, si multiplicamos la primera ecuación por $-2$ obtenemos un sistema equivalente:]#
$-2x + 4y$ \t ${}= 16$ \t $\color{blue}{(-2)}(x - 2y) = \color{blue}{(-2)}(-8)$
\\ $2x + 3y$ \t ${}=5$
#[Now if we add them, the $x$s cancel, and we get:][Ahora si las sumamos, las $x$ se cancelan y obtenemos:]#
$7y = 21$
#[So][Por lo tanto]#
$y = \dfrac{21}{7} = 3.$ \t $\qquad$ #[We have solved for $y.$][Hemos despeja a $y.$]#
#[Now that we know the value of $y,$ we could obtain $x$ by substituting this value in one of the original equations, but instead, just for the fun of it, let's eliminate $y$ starting again with the original system:][Ahora que sabemos que el valor de $y,$ podríamos obtener $x$ sustituyendo este valor en una de las ecuaciones originales, pero en cambio, por el gusto de hacerlo, vamos a eliminar $y$ comenzando de nuevo con el sistema original:]#
#[Original system][Sistema original]#:
$x - 2y$ \t ${}= -8$
\\ $2x + 3y$ \t ${}=5$
#[To eliminate $y,$ we want to make the coefficients of $y$ the same numerically but with opposite sign. We can accomplish this without using fractions by multiplying the first equation by $3$ and the second by $2$:][Para eliminar $y,$ queremos que los coeficientes de $y$ sea el mismo numéricamente pero con signos opuestos. Podemos lograr esto sin utilizar fracciones multiplicando la primera ecuación por $3$ y el segundo por $2.$]#
$3x -6y$ \t ${}=-24$ \t $\color{blue}{(3)}(x - 2y) = \color{blue}{(3)}(-8)$
\\ $4x + 6y$ \t ${}= 10$ \t $\color{blue}{(2)}(2x + 3y) = \color{blue}{(2)}(5)$
#[Now if we add them, the $y$s cancel, and we get:][Ahora si las sumamos, las $y$ se cancelan y obtenemos:]#
$7x = -14$
#[So][Por lo tanto]#
$x = \dfrac{-14}{7} = -2.$
%%Solution
$(x, y) = (-2, 3)$
#[Redundant and inconsistent systems][Systemas redundantes y inconsistentes]#
#[Next, we look at what happens in the elimination method when we encounter redundant and inconsistent systems:][A continuación, nos fijamos en lo que sucede en el método de eliminación cuando nos encontramos con sistemas redundantes e inconsistentes:]#
%%Q #[What happens when one of the coefficients is zero, as in, for instance,][
¿Qué sucede cuando uno de los coeficientes es cero, como en, por ejemplo,]#
$3x - y$ \t ${}= 2$
\\ $5y$ \t ${}= 6$?
%%A #[Nothing different, really. The second equation has $x$ already eliminated, and says that $y = 6/5.$ We can then obtain $x$ by substituting this value of $y$ in the first equation, or by eliminating $y$ in the usual way: Multiply the first equation by 5 and then add.][Nada diferente, de verdad. La segunda ecuación tiene $x$ ya eliminado, y nos dice que $y = 6/5.$ A continuación, podemos obtener $x$ sustituyendo este valor de $y$ en la primera ecuación, o por eliminar $y$ de la forma habitual: multiplicar la primera ecuación por 5 y luego sumar.]#
Now try some of the exercises in Section 3.1 in Finite Mathematics or Section 4.1 in Finite Mathematics and Applied Calculus.
or move ahead to the Part B of this tutorial by pressing "Next tutorial" on the sidebar.
Copyright © 2025 Stefan Waner and Steven R. Costenoble